Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Schritt 1.2.1
Kombiniere und .
Schritt 1.2.2
Kombiniere und .
Schritt 1.2.3
Bringe auf die linke Seite von .
Schritt 1.2.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.6
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2.7
Kombiniere und .
Schritt 1.2.8
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.9
Vereinfache den Zähler.
Schritt 1.2.9.1
Mutltipliziere mit .
Schritt 1.2.9.2
Subtrahiere von .
Schritt 1.2.10
Kombiniere und .
Schritt 1.2.11
Mutltipliziere mit .
Schritt 1.2.12
Mutltipliziere mit .
Schritt 1.2.13
Mutltipliziere mit .
Schritt 1.2.14
Kürze den gemeinsamen Faktor.
Schritt 1.2.15
Dividiere durch .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Berechne .
Schritt 1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.4.3
Mutltipliziere mit .
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.2.4
Kombiniere und .
Schritt 2.2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.6
Vereinfache den Zähler.
Schritt 2.2.6.1
Mutltipliziere mit .
Schritt 2.2.6.2
Subtrahiere von .
Schritt 2.2.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2.8
Kombiniere und .
Schritt 2.2.9
Kombiniere und .
Schritt 2.2.10
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.3
Differenziere unter Anwendung der Konstantenregel.
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.4
Vereine die Terme
Schritt 2.4.1
Addiere und .
Schritt 2.4.2
Addiere und .
Schritt 3
Die zweite Ableitung von nach ist .