Analysis Beispiele

Second 도함수 구하기 h(t)=3.0+2.7sin(1.3t+0.9)
Schritt 1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.2.2.2
Die Ableitung von nach ist .
Schritt 1.2.2.3
Ersetze alle durch .
Schritt 1.2.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.7
Mutltipliziere mit .
Schritt 1.2.8
Addiere und .
Schritt 1.2.9
Bringe auf die linke Seite von .
Schritt 1.2.10
Mutltipliziere mit .
Schritt 1.3
Addiere und .
Schritt 2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.2
Die Ableitung von nach ist .
Schritt 2.2.3
Ersetze alle durch .
Schritt 2.3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Mutltipliziere mit .
Schritt 2.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.5
Mutltipliziere mit .
Schritt 2.3.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.7
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.7.1
Addiere und .
Schritt 2.3.7.2
Mutltipliziere mit .
Schritt 3
Die zweite Ableitung von nach ist .