Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Bestimme die erste Ableitung.
Schritt 1.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.2
Berechne .
Schritt 1.1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.2.3
Mutltipliziere mit .
Schritt 1.1.1.3
Berechne .
Schritt 1.1.1.3.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.1.1.3.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.1.3.1.2
Die Ableitung von nach ist .
Schritt 1.1.1.3.1.3
Ersetze alle durch .
Schritt 1.1.1.3.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.3.4
Mutltipliziere mit .
Schritt 1.1.1.3.5
Mutltipliziere mit .
Schritt 1.1.1.4
Stelle die Terme um.
Schritt 1.1.2
Die erste Ableitung von nach ist .
Schritt 1.2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Schritt 1.2.1
Setze die erste Ableitung gleich .
Schritt 1.2.2
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.2.3.1
Teile jeden Ausdruck in durch .
Schritt 1.2.3.2
Vereinfache die linke Seite.
Schritt 1.2.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.2.1.2
Forme den Ausdruck um.
Schritt 1.2.3.2.2
Kürze den gemeinsamen Faktor von .
Schritt 1.2.3.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.2.2.2
Dividiere durch .
Schritt 1.2.3.3
Vereinfache die rechte Seite.
Schritt 1.2.3.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2.4
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 1.2.5
Vereinfache die rechte Seite.
Schritt 1.2.5.1
Berechne .
Schritt 1.2.6
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.2.6.1
Teile jeden Ausdruck in durch .
Schritt 1.2.6.2
Vereinfache die linke Seite.
Schritt 1.2.6.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.2.6.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.6.2.1.2
Forme den Ausdruck um.
Schritt 1.2.6.2.2
Kürze den gemeinsamen Faktor von .
Schritt 1.2.6.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.6.2.2.2
Dividiere durch .
Schritt 1.2.6.3
Vereinfache die rechte Seite.
Schritt 1.2.6.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2.6.3.2
Ersetze durch eine Näherung.
Schritt 1.2.6.3.3
Mutltipliziere mit .
Schritt 1.2.6.3.4
Dividiere durch .
Schritt 1.2.6.3.5
Mutltipliziere mit .
Schritt 1.2.7
Die Sinusfunktion ist negativ im dritten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere die Lösung von , um einen Referenzwinkel zu ermitteln. Addiere als nächstes diesen Referenzwinkel zu , um die Lösung im dritten Quadranten zu finden.
Schritt 1.2.8
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Schritt 1.2.8.1
Subtrahiere von .
Schritt 1.2.8.2
Der resultierende Winkel von ist positiv, kleiner als und gleich .
Schritt 1.2.8.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.2.8.3.1
Teile jeden Ausdruck in durch .
Schritt 1.2.8.3.2
Vereinfache die linke Seite.
Schritt 1.2.8.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.2.8.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.8.3.2.1.2
Forme den Ausdruck um.
Schritt 1.2.8.3.2.2
Kürze den gemeinsamen Faktor von .
Schritt 1.2.8.3.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.8.3.2.2.2
Dividiere durch .
Schritt 1.2.8.3.3
Vereinfache die rechte Seite.
Schritt 1.2.8.3.3.1
Ersetze durch eine Näherung.
Schritt 1.2.8.3.3.2
Mutltipliziere mit .
Schritt 1.2.8.3.3.3
Dividiere durch .
Schritt 1.2.9
Ermittele die Periode von .
Schritt 1.2.9.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 1.2.9.2
Ersetze durch in der Formel für die Periode.
Schritt 1.2.9.3
ist ungefähr , was positiv ist, also entferne den Absolutwert
Schritt 1.2.9.4
Kürze den gemeinsamen Faktor von .
Schritt 1.2.9.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.9.4.2
Forme den Ausdruck um.
Schritt 1.2.10
Addiere zu jedem negativen Winkel, um positive Winkel zu erhalten.
Schritt 1.2.10.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 1.2.10.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2.10.3
Kombiniere Brüche.
Schritt 1.2.10.3.1
Kombiniere und .
Schritt 1.2.10.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.10.4
Vereinfache den Zähler.
Schritt 1.2.10.4.1
Mutltipliziere mit .
Schritt 1.2.10.4.2
Subtrahiere von .
Schritt 1.2.10.5
Dividiere durch .
Schritt 1.2.10.6
Liste die neuen Winkel auf.
Schritt 1.2.11
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 1.3
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Schritt 1.3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 1.4
Werte an jeden Wert aus, wo die Ableitung ist oder nicht definiert ist.
Schritt 1.4.1
Berechne bei .
Schritt 1.4.1.1
Ersetze durch .
Schritt 1.4.1.2
Vereinfache.
Schritt 1.4.1.2.1
Vereinfache jeden Term.
Schritt 1.4.1.2.1.1
Mutltipliziere mit .
Schritt 1.4.1.2.1.2
Multipliziere .
Schritt 1.4.1.2.1.2.1
Mutltipliziere mit .
Schritt 1.4.1.2.1.2.2
Mutltipliziere mit .
Schritt 1.4.1.2.2
Addiere und .
Schritt 1.4.2
Berechne bei .
Schritt 1.4.2.1
Ersetze durch .
Schritt 1.4.2.2
Vereinfache.
Schritt 1.4.2.2.1
Vereinfache jeden Term.
Schritt 1.4.2.2.1.1
Mutltipliziere mit .
Schritt 1.4.2.2.1.2
Multipliziere .
Schritt 1.4.2.2.1.2.1
Mutltipliziere mit .
Schritt 1.4.2.2.1.2.2
Mutltipliziere mit .
Schritt 1.4.2.2.2
Addiere und .
Schritt 1.4.3
Berechne bei .
Schritt 1.4.3.1
Ersetze durch .
Schritt 1.4.3.2
Vereinfache.
Schritt 1.4.3.2.1
Vereinfache jeden Term.
Schritt 1.4.3.2.1.1
Mutltipliziere mit .
Schritt 1.4.3.2.1.2
Multipliziere .
Schritt 1.4.3.2.1.2.1
Mutltipliziere mit .
Schritt 1.4.3.2.1.2.2
Mutltipliziere mit .
Schritt 1.4.3.2.2
Addiere und .
Schritt 1.4.4
Berechne bei .
Schritt 1.4.4.1
Ersetze durch .
Schritt 1.4.4.2
Vereinfache.
Schritt 1.4.4.2.1
Vereinfache jeden Term.
Schritt 1.4.4.2.1.1
Mutltipliziere mit .
Schritt 1.4.4.2.1.2
Multipliziere .
Schritt 1.4.4.2.1.2.1
Mutltipliziere mit .
Schritt 1.4.4.2.1.2.2
Mutltipliziere mit .
Schritt 1.4.4.2.2
Addiere und .
Schritt 1.4.5
Berechne bei .
Schritt 1.4.5.1
Ersetze durch .
Schritt 1.4.5.2
Vereinfache.
Schritt 1.4.5.2.1
Vereinfache jeden Term.
Schritt 1.4.5.2.1.1
Mutltipliziere mit .
Schritt 1.4.5.2.1.2
Multipliziere .
Schritt 1.4.5.2.1.2.1
Mutltipliziere mit .
Schritt 1.4.5.2.1.2.2
Mutltipliziere mit .
Schritt 1.4.5.2.2
Addiere und .
Schritt 1.4.6
Berechne bei .
Schritt 1.4.6.1
Ersetze durch .
Schritt 1.4.6.2
Vereinfache.
Schritt 1.4.6.2.1
Vereinfache jeden Term.
Schritt 1.4.6.2.1.1
Mutltipliziere mit .
Schritt 1.4.6.2.1.2
Multipliziere .
Schritt 1.4.6.2.1.2.1
Mutltipliziere mit .
Schritt 1.4.6.2.1.2.2
Mutltipliziere mit .
Schritt 1.4.6.2.2
Addiere und .
Schritt 1.4.7
Berechne bei .
Schritt 1.4.7.1
Ersetze durch .
Schritt 1.4.7.2
Vereinfache.
Schritt 1.4.7.2.1
Vereinfache jeden Term.
Schritt 1.4.7.2.1.1
Mutltipliziere mit .
Schritt 1.4.7.2.1.2
Multipliziere .
Schritt 1.4.7.2.1.2.1
Mutltipliziere mit .
Schritt 1.4.7.2.1.2.2
Mutltipliziere mit .
Schritt 1.4.7.2.2
Addiere und .
Schritt 1.4.8
Berechne bei .
Schritt 1.4.8.1
Ersetze durch .
Schritt 1.4.8.2
Vereinfache.
Schritt 1.4.8.2.1
Vereinfache jeden Term.
Schritt 1.4.8.2.1.1
Mutltipliziere mit .
Schritt 1.4.8.2.1.2
Multipliziere .
Schritt 1.4.8.2.1.2.1
Mutltipliziere mit .
Schritt 1.4.8.2.1.2.2
Mutltipliziere mit .
Schritt 1.4.8.2.2
Addiere und .
Schritt 1.4.9
Berechne bei .
Schritt 1.4.9.1
Ersetze durch .
Schritt 1.4.9.2
Vereinfache.
Schritt 1.4.9.2.1
Vereinfache jeden Term.
Schritt 1.4.9.2.1.1
Mutltipliziere mit .
Schritt 1.4.9.2.1.2
Multipliziere .
Schritt 1.4.9.2.1.2.1
Mutltipliziere mit .
Schritt 1.4.9.2.1.2.2
Mutltipliziere mit .
Schritt 1.4.9.2.2
Addiere und .
Schritt 1.4.10
Berechne bei .
Schritt 1.4.10.1
Ersetze durch .
Schritt 1.4.10.2
Vereinfache.
Schritt 1.4.10.2.1
Vereinfache jeden Term.
Schritt 1.4.10.2.1.1
Mutltipliziere mit .
Schritt 1.4.10.2.1.2
Multipliziere .
Schritt 1.4.10.2.1.2.1
Mutltipliziere mit .
Schritt 1.4.10.2.1.2.2
Mutltipliziere mit .
Schritt 1.4.10.2.2
Addiere und .
Schritt 1.4.11
Liste all Punkte auf.
Schritt 2
Schließe die Punkte aus, die nicht im Intervall liegen.
Schritt 3
Schritt 3.1
Berechne bei .
Schritt 3.1.1
Ersetze durch .
Schritt 3.1.2
Vereinfache.
Schritt 3.1.2.1
Vereinfache jeden Term.
Schritt 3.1.2.1.1
Mutltipliziere mit .
Schritt 3.1.2.1.2
Multipliziere .
Schritt 3.1.2.1.2.1
Mutltipliziere mit .
Schritt 3.1.2.1.2.2
Mutltipliziere mit .
Schritt 3.1.2.1.3
Der genau Wert von ist .
Schritt 3.1.2.2
Addiere und .
Schritt 3.2
Berechne bei .
Schritt 3.2.1
Ersetze durch .
Schritt 3.2.2
Vereinfache.
Schritt 3.2.2.1
Vereinfache jeden Term.
Schritt 3.2.2.1.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.2.1.1.1
Faktorisiere aus heraus.
Schritt 3.2.2.1.1.2
Faktorisiere aus heraus.
Schritt 3.2.2.1.1.3
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.1.4
Forme den Ausdruck um.
Schritt 3.2.2.1.2
Kombiniere und .
Schritt 3.2.2.1.3
Potenziere mit .
Schritt 3.2.2.1.4
Potenziere mit .
Schritt 3.2.2.1.5
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.2.1.6
Addiere und .
Schritt 3.2.2.1.7
Berechne .
Schritt 3.2.2.2
Addiere und .
Schritt 3.3
Liste all Punkte auf.
Schritt 4
Vergleiche die für jeden Wert von gefundenen -Werte, um das absolute Maximum und das absolute Minimum im angegebenen Intervall zu bestimmen. Das Maximum wird beim größten -Wert und das Minimum beim niedrigsten -Wert auftreten.
Absolutes Maximum:
Absolutes Minimum:
Schritt 5