Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Benutze , um als neu zu schreiben.
Schritt 1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Ersetze alle durch .
Schritt 1.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.4
Kombiniere und .
Schritt 1.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.6
Vereinfache den Zähler.
Schritt 1.6.1
Mutltipliziere mit .
Schritt 1.6.2
Subtrahiere von .
Schritt 1.7
Kombiniere Brüche.
Schritt 1.7.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.7.2
Kombiniere und .
Schritt 1.7.3
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.8
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.10
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.11
Vereinfache Terme.
Schritt 1.11.1
Addiere und .
Schritt 1.11.2
Kombiniere und .
Schritt 1.11.3
Kombiniere und .
Schritt 1.11.4
Kürze den gemeinsamen Faktor.
Schritt 1.11.5
Forme den Ausdruck um.
Schritt 2
Schritt 2.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 2.2
Multipliziere die Exponenten in .
Schritt 2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.2
Kürze den gemeinsamen Faktor von .
Schritt 2.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.2
Forme den Ausdruck um.
Schritt 2.3
Vereinfache.
Schritt 2.4
Differenziere unter Anwendung der Potenzregel.
Schritt 2.4.1
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4.2
Mutltipliziere mit .
Schritt 2.5
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.5.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.5.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.5.3
Ersetze alle durch .
Schritt 2.6
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.7
Kombiniere und .
Schritt 2.8
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.9
Vereinfache den Zähler.
Schritt 2.9.1
Mutltipliziere mit .
Schritt 2.9.2
Subtrahiere von .
Schritt 2.10
Kombiniere Brüche.
Schritt 2.10.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.10.2
Kombiniere und .
Schritt 2.10.3
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.10.4
Kombiniere und .
Schritt 2.11
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.12
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.13
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.14
Kombiniere Brüche.
Schritt 2.14.1
Addiere und .
Schritt 2.14.2
Mutltipliziere mit .
Schritt 2.14.3
Kombiniere und .
Schritt 2.14.4
Kombiniere und .
Schritt 2.15
Potenziere mit .
Schritt 2.16
Potenziere mit .
Schritt 2.17
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.18
Addiere und .
Schritt 2.19
Faktorisiere aus heraus.
Schritt 2.20
Kürze die gemeinsamen Faktoren.
Schritt 2.20.1
Faktorisiere aus heraus.
Schritt 2.20.2
Kürze den gemeinsamen Faktor.
Schritt 2.20.3
Forme den Ausdruck um.
Schritt 2.21
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.22
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.23
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.24
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.24.1
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.24.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.24.3
Addiere und .
Schritt 2.24.4
Dividiere durch .
Schritt 2.25
Vereinfache .
Schritt 2.26
Subtrahiere von .
Schritt 2.27
Addiere und .
Schritt 2.28
Schreibe als ein Produkt um.
Schritt 2.29
Mutltipliziere mit .
Schritt 2.30
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.30.1
Mutltipliziere mit .
Schritt 2.30.1.1
Potenziere mit .
Schritt 2.30.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.30.2
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 2.30.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.30.4
Addiere und .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Schritt 4.1
Bestimme die erste Ableitung.
Schritt 4.1.1
Benutze , um als neu zu schreiben.
Schritt 4.1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 4.1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.3
Ersetze alle durch .
Schritt 4.1.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.1.4
Kombiniere und .
Schritt 4.1.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.1.6
Vereinfache den Zähler.
Schritt 4.1.6.1
Mutltipliziere mit .
Schritt 4.1.6.2
Subtrahiere von .
Schritt 4.1.7
Kombiniere Brüche.
Schritt 4.1.7.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.1.7.2
Kombiniere und .
Schritt 4.1.7.3
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 4.1.8
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.10
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.11
Vereinfache Terme.
Schritt 4.1.11.1
Addiere und .
Schritt 4.1.11.2
Kombiniere und .
Schritt 4.1.11.3
Kombiniere und .
Schritt 4.1.11.4
Kürze den gemeinsamen Faktor.
Schritt 4.1.11.5
Forme den Ausdruck um.
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Setze den Zähler gleich Null.
Schritt 6
Schritt 6.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 7
Kritische Punkte zum auswerten.
Schritt 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 9
Schritt 9.1
Vereinfache den Nenner.
Schritt 9.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 9.1.2
Addiere und .
Schritt 9.1.3
Schreibe als um.
Schritt 9.1.4
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 9.1.5
Kürze den gemeinsamen Faktor von .
Schritt 9.1.5.1
Kürze den gemeinsamen Faktor.
Schritt 9.1.5.2
Forme den Ausdruck um.
Schritt 9.1.6
Potenziere mit .
Schritt 9.2
Kürze den gemeinsamen Teiler von und .
Schritt 9.2.1
Faktorisiere aus heraus.
Schritt 9.2.2
Kürze die gemeinsamen Faktoren.
Schritt 9.2.2.1
Faktorisiere aus heraus.
Schritt 9.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 9.2.2.3
Forme den Ausdruck um.
Schritt 10
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 11
Schritt 11.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 11.2
Vereinfache das Ergebnis.
Schritt 11.2.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 11.2.2
Addiere und .
Schritt 11.2.3
Schreibe als um.
Schritt 11.2.4
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 11.2.5
Die endgültige Lösung ist .
Schritt 12
Dies sind die lokalen Extrema für .
ist ein lokales Minimum
Schritt 13