Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Schritt 2.1
Bestimme die erste Ableitung.
Schritt 2.1.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.1.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.1.3
Differenziere.
Schritt 2.1.3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.3.5
Mutltipliziere mit .
Schritt 2.1.3.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.3.7
Addiere und .
Schritt 2.1.4
Vereinfache.
Schritt 2.1.4.1
Wende das Distributivgesetz an.
Schritt 2.1.4.2
Wende das Distributivgesetz an.
Schritt 2.1.4.3
Vereine die Terme
Schritt 2.1.4.3.1
Bringe auf die linke Seite von .
Schritt 2.1.4.3.2
Addiere und .
Schritt 2.1.4.3.2.1
Bewege .
Schritt 2.1.4.3.2.2
Addiere und .
Schritt 2.1.4.3.3
Subtrahiere von .
Schritt 2.1.4.4
Stelle die Terme um.
Schritt 2.1.4.5
Stelle die Faktoren in um.
Schritt 2.2
Bestimme die zweite Ableitung.
Schritt 2.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.2
Berechne .
Schritt 2.2.2.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.2.2.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.2.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Berechne .
Schritt 2.2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.3.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.2.3.3
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.2.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3.5
Mutltipliziere mit .
Schritt 2.2.4
Berechne .
Schritt 2.2.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.4.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.2.5
Vereinfache.
Schritt 2.2.5.1
Wende das Distributivgesetz an.
Schritt 2.2.5.2
Vereine die Terme
Schritt 2.2.5.2.1
Subtrahiere von .
Schritt 2.2.5.2.1.1
Bewege .
Schritt 2.2.5.2.1.2
Subtrahiere von .
Schritt 2.2.5.2.2
Addiere und .
Schritt 2.2.5.3
Stelle die Terme um.
Schritt 2.2.5.4
Stelle die Faktoren in um.
Schritt 2.3
Die zweite Ableitung von nach ist .
Schritt 3
Schritt 3.1
Setze die zweite Ableitung gleich .
Schritt 3.2
Faktorisiere die linke Seite der Gleichung.
Schritt 3.2.1
Faktorisiere aus heraus.
Schritt 3.2.1.1
Faktorisiere aus heraus.
Schritt 3.2.1.2
Faktorisiere aus heraus.
Schritt 3.2.1.3
Faktorisiere aus heraus.
Schritt 3.2.1.4
Faktorisiere aus heraus.
Schritt 3.2.1.5
Faktorisiere aus heraus.
Schritt 3.2.2
Faktorisiere.
Schritt 3.2.2.1
Faktorisiere unter der Verwendung der AC-Methode.
Schritt 3.2.2.1.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 3.2.2.1.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 3.2.2.2
Entferne unnötige Klammern.
Schritt 3.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3.4
Setze gleich und löse nach auf.
Schritt 3.4.1
Setze gleich .
Schritt 3.4.2
Löse nach auf.
Schritt 3.4.2.1
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 3.4.2.2
Die Gleichung kann nicht gelöst werden, da nicht definiert ist.
Undefiniert
Schritt 3.4.2.3
Es gibt keine Lösung für
Keine Lösung
Keine Lösung
Keine Lösung
Schritt 3.5
Setze gleich und löse nach auf.
Schritt 3.5.1
Setze gleich .
Schritt 3.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.6
Setze gleich und löse nach auf.
Schritt 3.6.1
Setze gleich .
Schritt 3.6.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.7
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 4
Schritt 4.1
Ersetze in , um den Wert von zu ermitteln.
Schritt 4.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.1.2
Vereinfache das Ergebnis.
Schritt 4.1.2.1
Vereinfache jeden Term.
Schritt 4.1.2.1.1
Potenziere mit .
Schritt 4.1.2.1.2
Mutltipliziere mit .
Schritt 4.1.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 4.1.2.2.1
Subtrahiere von .
Schritt 4.1.2.2.2
Addiere und .
Schritt 4.1.2.3
Die endgültige Lösung ist .
Schritt 4.2
Der Punkt, der durch Einsetzen von in ermittelt werden kann, ist . Dieser Punkt kann ein Wendepunkt sein.
Schritt 4.3
Ersetze in , um den Wert von zu ermitteln.
Schritt 4.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.3.2
Vereinfache das Ergebnis.
Schritt 4.3.2.1
Vereinfache jeden Term.
Schritt 4.3.2.1.1
Potenziere mit .
Schritt 4.3.2.1.2
Mutltipliziere mit .
Schritt 4.3.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 4.3.2.2.1
Subtrahiere von .
Schritt 4.3.2.2.2
Addiere und .
Schritt 4.3.2.3
Die endgültige Lösung ist .
Schritt 4.4
Der Punkt, der durch Einsetzen von in ermittelt werden kann, ist . Dieser Punkt kann ein Wendepunkt sein.
Schritt 4.5
Bestimme die Punkte, die Wendepunkte sein könnten.
Schritt 5
Teile in Intervalle um die Punkte herum, die potentiell Wendepunkte sein könnten.
Schritt 6
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Schritt 6.2.1
Vereinfache jeden Term.
Schritt 6.2.1.1
Potenziere mit .
Schritt 6.2.1.2
Mutltipliziere mit .
Schritt 6.2.1.3
Mutltipliziere mit .
Schritt 6.2.1.4
Mutltipliziere mit .
Schritt 6.2.2
Vereinfache durch Addieren von Termen.
Schritt 6.2.2.1
Subtrahiere von .
Schritt 6.2.2.2
Addiere und .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Bei ist die zweite Ableitung . Da dies positiv ist, steigt die zweite Ableitung auf dem Intervall .
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 7
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Schritt 7.2.1
Vereinfache jeden Term.
Schritt 7.2.1.1
Wende die Produktregel auf an.
Schritt 7.2.1.2
Potenziere mit .
Schritt 7.2.1.3
Potenziere mit .
Schritt 7.2.1.4
Kombiniere und .
Schritt 7.2.1.5
Multipliziere .
Schritt 7.2.1.5.1
Kombiniere und .
Schritt 7.2.1.5.2
Mutltipliziere mit .
Schritt 7.2.1.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 7.2.1.7
Kombiniere und .
Schritt 7.2.1.8
Bringe auf die linke Seite von .
Schritt 7.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 7.2.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 7.2.3.1
Mutltipliziere mit .
Schritt 7.2.3.2
Mutltipliziere mit .
Schritt 7.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.2.5
Vereinfache jeden Term.
Schritt 7.2.5.1
Vereinfache den Zähler.
Schritt 7.2.5.1.1
Mutltipliziere mit .
Schritt 7.2.5.1.2
Subtrahiere von .
Schritt 7.2.5.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 7.2.6
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 7.2.7
Kombiniere Brüche.
Schritt 7.2.7.1
Kombiniere und .
Schritt 7.2.7.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.2.8
Vereinfache den Zähler.
Schritt 7.2.8.1
Mutltipliziere mit .
Schritt 7.2.8.2
Addiere und .
Schritt 7.2.9
Ziehe das Minuszeichen vor den Bruch.
Schritt 7.2.10
Die endgültige Lösung ist .
Schritt 7.3
Bei , die zweite Ableitung ist . Da diese negativ ist, fällt die zweite Ableitung im Intervall
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 8
Schritt 8.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 8.2
Vereinfache das Ergebnis.
Schritt 8.2.1
Vereinfache jeden Term.
Schritt 8.2.1.1
Potenziere mit .
Schritt 8.2.1.2
Mutltipliziere mit .
Schritt 8.2.1.3
Mutltipliziere mit .
Schritt 8.2.1.4
Mutltipliziere mit .
Schritt 8.2.2
Vereinfache durch Addieren von Termen.
Schritt 8.2.2.1
Subtrahiere von .
Schritt 8.2.2.2
Addiere und .
Schritt 8.2.3
Die endgültige Lösung ist .
Schritt 8.3
Bei ist die zweite Ableitung . Da dies positiv ist, steigt die zweite Ableitung auf dem Intervall .
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 9
Ein Wendepunkt ist ein Punkt auf einer Kurve, an dem die Konkavität das Vorzeichen von Plus zu Minus oder von Minus zu Plus ändert. In diesem Fall sind die Wendepunkte .
Schritt 10