Analysis Beispiele

몫의 미분 법칙을 이용하여 미분 구하기 - d/dx p=(600x)/(100+x^2)
Schritt 1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3
Mutltipliziere mit .
Schritt 2.4
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.7
Addiere und .
Schritt 3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Wende das Distributivgesetz an.
Schritt 3.2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Mutltipliziere mit .
Schritt 3.2.1.2
Bringe auf die linke Seite von .
Schritt 3.2.1.3
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.2.1.4
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.4.1
Bewege .
Schritt 3.2.1.4.2
Mutltipliziere mit .
Schritt 3.2.1.5
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.5.1
Mutltipliziere mit .
Schritt 3.2.1.5.2
Mutltipliziere mit .
Schritt 3.2.2
Subtrahiere von .
Schritt 3.3
Stelle die Terme um.
Schritt 3.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1.1
Faktorisiere aus heraus.
Schritt 3.4.1.2
Faktorisiere aus heraus.
Schritt 3.4.1.3
Faktorisiere aus heraus.
Schritt 3.4.2
Schreibe als um.
Schritt 3.4.3
Stelle und um.
Schritt 3.4.4
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .