Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Stelle als Funktion von auf.
Schritt 2
Schritt 2.1
Differenziere.
Schritt 2.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Die Ableitung von nach ist .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.2.1
Teile jeden Ausdruck in durch .
Schritt 3.2.2
Vereinfache die linke Seite.
Schritt 3.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.2
Dividiere durch .
Schritt 3.2.3
Vereinfache die rechte Seite.
Schritt 3.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 3.4
Vereinfache die rechte Seite.
Schritt 3.4.1
Der genau Wert von ist .
Schritt 3.5
Die Sinusfunktion ist negativ im dritten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere die Lösung von , um einen Referenzwinkel zu ermitteln. Addiere als nächstes diesen Referenzwinkel zu , um die Lösung im dritten Quadranten zu finden.
Schritt 3.6
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Schritt 3.6.1
Subtrahiere von .
Schritt 3.6.2
Der resultierende Winkel von ist positiv, kleiner als und gleich .
Schritt 3.7
Ermittele die Periode von .
Schritt 3.7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 3.7.2
Ersetze durch in der Formel für die Periode.
Schritt 3.7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.7.4
Dividiere durch .
Schritt 3.8
Addiere zu jedem negativen Winkel, um positive Winkel zu erhalten.
Schritt 3.8.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 3.8.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.8.3
Kombiniere Brüche.
Schritt 3.8.3.1
Kombiniere und .
Schritt 3.8.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.8.4
Vereinfache den Zähler.
Schritt 3.8.4.1
Mutltipliziere mit .
Schritt 3.8.4.2
Subtrahiere von .
Schritt 3.8.5
Liste die neuen Winkel auf.
Schritt 3.9
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 4
Schritt 4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.2
Vereinfache das Ergebnis.
Schritt 4.2.1
Vereinfache jeden Term.
Schritt 4.2.1.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im dritten Quadranten negativ ist.
Schritt 4.2.1.2
Der genau Wert von ist .
Schritt 4.2.1.3
Kürze den gemeinsamen Faktor von .
Schritt 4.2.1.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 4.2.1.3.2
Faktorisiere aus heraus.
Schritt 4.2.1.3.3
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.3.4
Forme den Ausdruck um.
Schritt 4.2.1.4
Mutltipliziere mit .
Schritt 4.2.1.5
Mutltipliziere mit .
Schritt 4.2.2
Die endgültige Lösung ist .
Schritt 5
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Schritt 5.2.1
Vereinfache jeden Term.
Schritt 5.2.1.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 5.2.1.2
Der genau Wert von ist .
Schritt 5.2.1.3
Kürze den gemeinsamen Faktor von .
Schritt 5.2.1.3.1
Faktorisiere aus heraus.
Schritt 5.2.1.3.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.3.3
Forme den Ausdruck um.
Schritt 5.2.1.4
Schreibe als um.
Schritt 5.2.2
Die endgültige Lösung ist .
Schritt 6
Die horizontalen Tangenten der Funktion sind .
Schritt 7