Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Stelle als Funktion von auf.
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 3
Schritt 3.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.2
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 3.3
Multipliziere die linke Seite aus.
Schritt 3.3.1
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 3.3.2
Der natürliche Logarithmus von ist .
Schritt 3.3.3
Mutltipliziere mit .
Schritt 4
Schritt 4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.2
Vereinfache das Ergebnis.
Schritt 4.2.1
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 4.2.2
Die endgültige Lösung ist .
Schritt 5
Die horizontale Tangentenlinie der Funktion ist .
Schritt 6