Analysis Beispiele

@POINT에서의 법선 구하기 y=3sin(pix+y) , (1,0)
,
Schritt 1
Finde die erste Ableitung und werte sie bei und aus, um die Steigung der Tangentenlinie zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere beide Seiten der Gleichung.
Schritt 1.2
Die Ableitung von nach ist .
Schritt 1.3
Differenziere die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.3.2.2
Die Ableitung von nach ist .
Schritt 1.3.2.3
Ersetze alle durch .
Schritt 1.3.3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.3.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3.4
Mutltipliziere mit .
Schritt 1.3.4
Schreibe als um.
Schritt 1.4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 1.5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.1.1
Wende das Distributivgesetz an.
Schritt 1.5.1.1.2
Stelle die Faktoren in um.
Schritt 1.5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.5.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.3.1
Faktorisiere aus heraus.
Schritt 1.5.3.2
Faktorisiere aus heraus.
Schritt 1.5.3.3
Faktorisiere aus heraus.
Schritt 1.5.4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.4.1
Teile jeden Ausdruck in durch .
Schritt 1.5.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.5.4.2.1.2
Dividiere durch .
Schritt 1.6
Ersetze durch .
Schritt 1.7
Berechne bei und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 1.7.2
Ersetze in dem Ausdruck die Variable durch .
Schritt 1.7.3
Entferne die Klammern.
Schritt 1.7.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.4.1
Mutltipliziere mit .
Schritt 1.7.4.2
Addiere und .
Schritt 1.7.4.3
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im zweiten Quadranten negativ ist.
Schritt 1.7.4.4
Der genau Wert von ist .
Schritt 1.7.4.5
Mutltipliziere mit .
Schritt 1.7.4.6
Mutltipliziere mit .
Schritt 1.7.5
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.5.1
Mutltipliziere mit .
Schritt 1.7.5.2
Addiere und .
Schritt 1.7.5.3
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im zweiten Quadranten negativ ist.
Schritt 1.7.5.4
Der genau Wert von ist .
Schritt 1.7.5.5
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.5.5.1
Mutltipliziere mit .
Schritt 1.7.5.5.2
Mutltipliziere mit .
Schritt 1.7.5.6
Addiere und .
Schritt 1.7.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 2
Die Normalenlinie steht senkrecht zur Tangentenlinie. Nehme den negativen Kehrwert der Steigung der Tangentenlinie, um die Steigung der Normalen zu finden.
Schritt 3
Steigung und Punktwerte in die Punkt-Steigungs-Formel einfügen und für lösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Benutze die Steigung und einen gegebenen Punkt , um und in der Punkt-Steigungs-Form zu substituieren, welche von der Gleichung für die Steigung abgeleitet ist.
Schritt 3.2
Vereinfache die Gleichung und behalte die Punkt-Richtungs-Form bei.
Schritt 3.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Addiere und .
Schritt 3.3.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Wende das Distributivgesetz an.
Schritt 3.3.2.2
Kombiniere und .
Schritt 3.3.2.3
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.3.1
Kombiniere und .
Schritt 3.3.2.3.2
Mutltipliziere mit .
Schritt 3.3.2.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3.3
Stelle die Terme um.
Schritt 4