Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Sei , mit . Dann ist . Beachte, dass wegen , positiv ist.
Schritt 5
Schritt 5.1
Vereinfache .
Schritt 5.1.1
Vereinfache jeden Term.
Schritt 5.1.1.1
Wende die Produktregel auf an.
Schritt 5.1.1.2
Potenziere mit .
Schritt 5.1.1.3
Mutltipliziere mit .
Schritt 5.1.2
Faktorisiere aus heraus.
Schritt 5.1.3
Faktorisiere aus heraus.
Schritt 5.1.4
Faktorisiere aus heraus.
Schritt 5.1.5
Wende den trigonometrischen Pythagoras an.
Schritt 5.1.6
Schreibe als um.
Schritt 5.1.7
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 5.2
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Schritt 5.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.2
Forme den Ausdruck um.
Schritt 5.2.2
Vereinfache.
Schritt 5.2.2.1
Faktorisiere aus heraus.
Schritt 5.2.2.2
Wende die Produktregel auf an.
Schritt 5.2.2.3
Potenziere mit .
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Benutze die Halbwinkelformel, um als neu zu schreiben.
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Schritt 9.1
Kombiniere und .
Schritt 9.2
Kürze den gemeinsamen Teiler von und .
Schritt 9.2.1
Faktorisiere aus heraus.
Schritt 9.2.2
Kürze die gemeinsamen Faktoren.
Schritt 9.2.2.1
Faktorisiere aus heraus.
Schritt 9.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 9.2.2.3
Forme den Ausdruck um.
Schritt 9.2.2.4
Dividiere durch .
Schritt 10
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 11
Wende die Konstantenregel an.
Schritt 12
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 13
Schritt 13.1
Es sei . Ermittle .
Schritt 13.1.1
Differenziere .
Schritt 13.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 13.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 13.1.4
Mutltipliziere mit .
Schritt 13.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 14
Kombiniere und .
Schritt 15
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 16
Das Integral von nach ist .
Schritt 17
Vereinfache.
Schritt 18
Schritt 18.1
Ersetze alle durch .
Schritt 18.2
Ersetze alle durch .
Schritt 18.3
Ersetze alle durch .
Schritt 19
Schritt 19.1
Kombiniere und .
Schritt 19.2
Wende das Distributivgesetz an.
Schritt 19.3
Kürze den gemeinsamen Faktor von .
Schritt 19.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 19.3.2
Faktorisiere aus heraus.
Schritt 19.3.3
Kürze den gemeinsamen Faktor.
Schritt 19.3.4
Forme den Ausdruck um.
Schritt 19.4
Mutltipliziere mit .
Schritt 20
Stelle die Terme um.
Schritt 21
Die Lösung ist die Stammfunktion der Funktion .