Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Schritt 4.1
Schreibe als um.
Schritt 4.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 4.2.1
Wende das Distributivgesetz an.
Schritt 4.2.2
Wende das Distributivgesetz an.
Schritt 4.2.3
Wende das Distributivgesetz an.
Schritt 4.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 4.3.1
Vereinfache jeden Term.
Schritt 4.3.1.1
Multipliziere .
Schritt 4.3.1.1.1
Potenziere mit .
Schritt 4.3.1.1.2
Potenziere mit .
Schritt 4.3.1.1.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.3.1.1.4
Addiere und .
Schritt 4.3.1.2
Multipliziere .
Schritt 4.3.1.2.1
Potenziere mit .
Schritt 4.3.1.2.2
Potenziere mit .
Schritt 4.3.1.2.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.3.1.2.4
Addiere und .
Schritt 4.3.2
Stelle die Faktoren von um.
Schritt 4.3.3
Addiere und .
Schritt 4.4
Bewege .
Schritt 4.5
Wende den trigonometrischen Pythagoras an.
Schritt 4.6
Vereinfache jeden Term.
Schritt 4.6.1
Stelle und um.
Schritt 4.6.2
Stelle und um.
Schritt 4.6.3
Wende die Doppelwinkelfunktion für den Sinus an.
Schritt 5
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 6
Wende die Konstantenregel an.
Schritt 7
Schritt 7.1
Es sei . Ermittle .
Schritt 7.1.1
Differenziere .
Schritt 7.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 7.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 7.1.4
Mutltipliziere mit .
Schritt 7.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 8
Kombiniere und .
Schritt 9
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 10
Das Integral von nach ist .
Schritt 11
Vereinfache.
Schritt 12
Ersetze alle durch .
Schritt 13
Stelle die Terme um.
Schritt 14
Die Lösung ist die Stammfunktion der Funktion .