Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 2
Schritt 2.1
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.2.1
Teile jeden Term in durch . Wenn beide Seiten der Ungleichung mit einen negativen Wert multipliziert oder dividiert werden, kehre die Vorzeichen der Ungleichung um.
Schritt 2.2.2
Vereinfache die linke Seite.
Schritt 2.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2.2.2.2
Dividiere durch .
Schritt 2.2.3
Vereinfache die rechte Seite.
Schritt 2.2.3.1
Dividiere durch .
Schritt 2.3
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 2.4
Vereinfache die rechte Seite.
Schritt 2.4.1
Der genau Wert von ist .
Schritt 2.5
Die Sinusfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 2.6
Vereinfache .
Schritt 2.6.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.6.2
Kombiniere Brüche.
Schritt 2.6.2.1
Kombiniere und .
Schritt 2.6.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.6.3
Vereinfache den Zähler.
Schritt 2.6.3.1
Bringe auf die linke Seite von .
Schritt 2.6.3.2
Subtrahiere von .
Schritt 2.7
Ermittele die Periode von .
Schritt 2.7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 2.7.2
Ersetze durch in der Formel für die Periode.
Schritt 2.7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 2.7.4
Dividiere durch .
Schritt 2.8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
Schritt 2.9
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 2.10
Wähle einen Testwert aus jedem Intervall und setze diesen Wert in die ursprüngliche Ungleichung ein, um zu ermitteln, welche Intervalle die Ungleichung erfüllen.
Schritt 2.10.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 2.10.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 2.10.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 2.10.1.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 2.10.2
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Wahr
Wahr
Schritt 2.11
Die Lösung besteht aus allen wahren Intervallen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 4