Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.2
Berechne den Grenzwert des Zählers.
Schritt 1.2.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.2.2
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.2.3
Bringe den Grenzwert in den Exponenten.
Schritt 1.2.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.2.5
Berechne die Grenzwerte durch Einsetzen von für alle .
Schritt 1.2.5.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.2.5.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.2.6
Vereinfache die Lösung.
Schritt 1.2.6.1
Vereinfache jeden Term.
Schritt 1.2.6.1.1
Alles, was mit potenziert wird, ist .
Schritt 1.2.6.1.2
Mutltipliziere mit .
Schritt 1.2.6.2
Subtrahiere von .
Schritt 1.2.6.3
Addiere und .
Schritt 1.2.6.4
Mutltipliziere mit .
Schritt 1.3
Berechne den Grenzwert des Nenners.
Schritt 1.3.1
Berechne den Grenzwert.
Schritt 1.3.1.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.3.1.2
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.3.3
Vereinfache die Lösung.
Schritt 1.3.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.3.3.2
Mutltipliziere mit .
Schritt 1.3.3.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3
Schritt 3.1
Differenziere den Zähler und Nenner.
Schritt 3.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.4
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 3.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.6
Addiere und .
Schritt 3.7
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.9
Mutltipliziere mit .
Schritt 3.10
Vereinfache.
Schritt 3.10.1
Wende das Distributivgesetz an.
Schritt 3.10.2
Mutltipliziere mit .
Schritt 3.11
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.12
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.13
Mutltipliziere mit .
Schritt 4
Schritt 4.1
Faktorisiere aus heraus.
Schritt 4.2
Faktorisiere aus heraus.
Schritt 4.3
Faktorisiere aus heraus.
Schritt 4.4
Kürze die gemeinsamen Faktoren.
Schritt 4.4.1
Faktorisiere aus heraus.
Schritt 4.4.2
Kürze den gemeinsamen Faktor.
Schritt 4.4.3
Forme den Ausdruck um.
Schritt 5
Schritt 5.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Schritt 5.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 5.1.2
Berechne den Grenzwert des Zählers.
Schritt 5.1.2.1
Berechne den Grenzwert.
Schritt 5.1.2.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 5.1.2.1.2
Bringe den Grenzwert in den Exponenten.
Schritt 5.1.2.1.3
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 5.1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 5.1.2.3
Vereinfache die Lösung.
Schritt 5.1.2.3.1
Vereinfache jeden Term.
Schritt 5.1.2.3.1.1
Alles, was mit potenziert wird, ist .
Schritt 5.1.2.3.1.2
Mutltipliziere mit .
Schritt 5.1.2.3.2
Subtrahiere von .
Schritt 5.1.3
Berechne den Grenzwert des Nenners.
Schritt 5.1.3.1
Berechne den Grenzwert.
Schritt 5.1.3.1.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 5.1.3.1.2
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 5.1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 5.1.3.3
Vereinfache die Lösung.
Schritt 5.1.3.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 5.1.3.3.2
Mutltipliziere mit .
Schritt 5.1.3.3.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 5.1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 5.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 5.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 5.3
Bestimme die Ableitung des Zählers und des Nenners.
Schritt 5.3.1
Differenziere den Zähler und Nenner.
Schritt 5.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 5.3.3
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 5.3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 5.3.5
Addiere und .
Schritt 5.3.6
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.3.7
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.3.8
Mutltipliziere mit .
Schritt 6
Da der Zähler positiv ist und der Nenner gegen null geht und größer als null ist für Werte von unmittelbar rechts von , steigt die Funktion ohne Grenzen an.