Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.2
Berechne den Grenzwert des Zählers.
Schritt 1.2.1
Bringe den Grenzwert in den Logarithmus.
Schritt 1.2.2
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.2.3
Bringe den Grenzwert in den Exponenten.
Schritt 1.2.4
Berechne die Grenzwerte durch Einsetzen von für alle .
Schritt 1.2.4.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.2.4.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.2.5
Vereinfache die Lösung.
Schritt 1.2.5.1
Alles, was mit potenziert wird, ist .
Schritt 1.2.5.2
Addiere und .
Schritt 1.2.5.3
Der natürliche Logarithmus von ist .
Schritt 1.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3
Schritt 3.1
Differenziere den Zähler und Nenner.
Schritt 3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2
Die Ableitung von nach ist .
Schritt 3.2.3
Ersetze alle durch .
Schritt 3.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.4
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 3.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.6
Vereinfache.
Schritt 3.6.1
Stelle die Faktoren von um.
Schritt 3.6.2
Mutltipliziere mit .
Schritt 3.7
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5
Mutltipliziere mit .
Schritt 6
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 7
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 8
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 9
Bringe den Grenzwert in den Exponenten.
Schritt 10
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 11
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 12
Bringe den Grenzwert in den Exponenten.
Schritt 13
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 14
Schritt 14.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 14.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 14.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 15
Schritt 15.1
Vereinfache den Zähler.
Schritt 15.1.1
Alles, was mit potenziert wird, ist .
Schritt 15.1.2
Addiere und .
Schritt 15.2
Vereinfache den Nenner.
Schritt 15.2.1
Alles, was mit potenziert wird, ist .
Schritt 15.2.2
Addiere und .
Schritt 15.3
Dividiere durch .