Analysis Beispiele

Berechne unter Anwendung der Regel von de l’Hospital Grenzwert von (9-x^2)/(cos(pi/2x)), wenn x gegen 3 geht
Schritt 1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.2
Berechne den Grenzwert des Zählers.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.2.1.2
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.2.1.3
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.2.3
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1.1
Potenziere mit .
Schritt 1.2.3.1.2
Mutltipliziere mit .
Schritt 1.2.3.2
Subtrahiere von .
Schritt 1.3
Berechne den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.1
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 1.3.1.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.3.3
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.1
Kombiniere und .
Schritt 1.3.3.2
Bringe auf die linke Seite von .
Schritt 1.3.3.3
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 1.3.3.4
Der genau Wert von ist .
Schritt 1.3.3.5
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Differenziere den Zähler und Nenner.
Schritt 3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4.3
Mutltipliziere mit .
Schritt 3.5
Subtrahiere von .
Schritt 3.6
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.6.2
Die Ableitung von nach ist .
Schritt 3.6.3
Ersetze alle durch .
Schritt 3.7
Kombiniere und .
Schritt 3.8
Kombiniere und .
Schritt 3.9
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.10
Kombiniere und .
Schritt 3.11
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.12
Mutltipliziere mit .
Schritt 4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5
Vereinige Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Mutltipliziere mit .
Schritt 5.2
Kombiniere und .
Schritt 5.3
Mutltipliziere mit .
Schritt 5.4
Kombiniere und .
Schritt 6
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 7
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 8
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 9
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 10
Berechne die Grenzwerte durch Einsetzen von für alle .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 10.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 11
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Separiere Brüche.
Schritt 11.2
Wandle von nach um.
Schritt 11.3
Dividiere durch .
Schritt 11.4
Kombiniere und .
Schritt 11.5
Bringe auf die linke Seite von .
Schritt 11.6
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosekans im vierten Quadranten negativ ist.
Schritt 11.7
Der genau Wert von ist .
Schritt 11.8
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.8.1
Mutltipliziere mit .
Schritt 11.8.2
Mutltipliziere mit .
Schritt 11.9
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.9.1
Kombiniere und .
Schritt 11.9.2
Mutltipliziere mit .
Schritt 11.10
Ziehe das Minuszeichen vor den Bruch.