Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 1.1.2
Die Ableitung von nach ist .
Schritt 1.1.3
Differenziere unter Anwendung der Potenzregel.
Schritt 1.1.3.1
Kombiniere und .
Schritt 1.1.3.2
Kürze den gemeinsamen Faktor von .
Schritt 1.1.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.3.2.2
Forme den Ausdruck um.
Schritt 1.1.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.4
Mutltipliziere mit .
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Setze den Zähler gleich Null.
Schritt 2.3
Löse die Gleichung nach auf.
Schritt 2.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.3.2.1
Teile jeden Ausdruck in durch .
Schritt 2.3.2.2
Vereinfache die linke Seite.
Schritt 2.3.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2.3.2.2.2
Dividiere durch .
Schritt 2.3.2.3
Vereinfache die rechte Seite.
Schritt 2.3.2.3.1
Dividiere durch .
Schritt 2.3.3
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 2.3.4
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 2.3.5
Schreibe die Gleichung als um.
Schritt 3
Schritt 3.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 3.2
Löse nach auf.
Schritt 3.2.1
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.2.2
Vereinfache .
Schritt 3.2.2.1
Schreibe als um.
Schritt 3.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 3.2.2.3
Plus oder Minus ist .
Schritt 3.3
Setze das Argument in kleiner oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 3.4
Die Gleichung ist nicht definiert, wo der Nenner gleich , das Argument einer Quadratwurzel kleiner als oder das Argument eines Logarithmus kleiner oder gleich ist.
Schritt 4
Schritt 4.1
Berechne bei .
Schritt 4.1.1
Ersetze durch .
Schritt 4.1.2
Der natürliche Logarithmus von ist .
Schritt 4.2
Berechne bei .
Schritt 4.2.1
Ersetze durch .
Schritt 4.2.2
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Undefiniert
Schritt 4.3
Liste all Punkte auf.
Schritt 5