Analysis Beispiele

Ermittle die kritischen Punkte f(x)=cos(x)^2-sin(x)
Schritt 1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.1.3
Ersetze alle durch .
Schritt 1.1.2.2
Die Ableitung von nach ist .
Schritt 1.1.2.3
Mutltipliziere mit .
Schritt 1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Die Ableitung von nach ist .
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Faktorisiere aus heraus.
Schritt 2.2.2
Faktorisiere aus heraus.
Schritt 2.2.3
Faktorisiere aus heraus.
Schritt 2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 2.4.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.2.1
Der genau Wert von ist .
Schritt 2.4.2.3
Die Kosinusfunktion ist positiv im ersten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 2.4.2.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.4.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.4.2.4.2
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.4.2.1
Kombiniere und .
Schritt 2.4.2.4.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.4.2.4.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.4.3.1
Mutltipliziere mit .
Schritt 2.4.2.4.3.2
Subtrahiere von .
Schritt 2.4.2.5
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 2.4.2.5.2
Ersetze durch in der Formel für die Periode.
Schritt 2.4.2.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 2.4.2.5.4
Dividiere durch .
Schritt 2.4.2.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 2.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Setze gleich .
Schritt 2.5.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.5.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.5.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.5.2.2.2.1.2
Dividiere durch .
Schritt 2.5.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.5.2.3
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 2.5.2.4
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.4.1
Der genau Wert von ist .
Schritt 2.5.2.5
Die Sinusfunktion ist negativ im dritten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere die Lösung von , um einen Referenzwinkel zu ermitteln. Addiere als nächstes diesen Referenzwinkel zu , um die Lösung im dritten Quadranten zu finden.
Schritt 2.5.2.6
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.6.1
Subtrahiere von .
Schritt 2.5.2.6.2
Der resultierende Winkel von ist positiv, kleiner als und gleich .
Schritt 2.5.2.7
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 2.5.2.7.2
Ersetze durch in der Formel für die Periode.
Schritt 2.5.2.7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 2.5.2.7.4
Dividiere durch .
Schritt 2.5.2.8
Addiere zu jedem negativen Winkel, um positive Winkel zu erhalten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.8.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 2.5.2.8.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.5.2.8.3
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.8.3.1
Kombiniere und .
Schritt 2.5.2.8.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.5.2.8.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.8.4.1
Mutltipliziere mit .
Schritt 2.5.2.8.4.2
Subtrahiere von .
Schritt 2.5.2.8.5
Liste die neuen Winkel auf.
Schritt 2.5.2.9
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 2.6
Die endgültige Lösung sind alle Werte, die wahr machen.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 3
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 4
Werte an jeden Wert aus, wo die Ableitung ist oder nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Ersetze durch .
Schritt 4.1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1.1
Der genau Wert von ist .
Schritt 4.1.2.1.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.1.2.1.3
Der genau Wert von ist .
Schritt 4.1.2.1.4
Mutltipliziere mit .
Schritt 4.1.2.2
Subtrahiere von .
Schritt 4.2
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Ersetze durch .
Schritt 4.2.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 4.2.2.1.2
Der genau Wert von ist .
Schritt 4.2.2.1.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.2.2.1.4
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Sinus im vierten Quadranten negativ ist.
Schritt 4.2.2.1.5
Der genau Wert von ist .
Schritt 4.2.2.1.6
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1.6.1
Mutltipliziere mit .
Schritt 4.2.2.1.6.2
Mutltipliziere mit .
Schritt 4.2.2.2
Addiere und .
Schritt 4.3
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Ersetze durch .
Schritt 4.3.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im dritten Quadranten negativ ist.
Schritt 4.3.2.1.2
Der genau Wert von ist .
Schritt 4.3.2.1.3
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.3.1
Wende die Produktregel auf an.
Schritt 4.3.2.1.3.2
Wende die Produktregel auf an.
Schritt 4.3.2.1.4
Potenziere mit .
Schritt 4.3.2.1.5
Mutltipliziere mit .
Schritt 4.3.2.1.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.6.1
Benutze , um als neu zu schreiben.
Schritt 4.3.2.1.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.3.2.1.6.3
Kombiniere und .
Schritt 4.3.2.1.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.2.1.6.4.2
Forme den Ausdruck um.
Schritt 4.3.2.1.6.5
Berechne den Exponenten.
Schritt 4.3.2.1.7
Potenziere mit .
Schritt 4.3.2.1.8
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Sinus im dritten Quadranten negativ ist.
Schritt 4.3.2.1.9
Der genau Wert von ist .
Schritt 4.3.2.1.10
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.10.1
Mutltipliziere mit .
Schritt 4.3.2.1.10.2
Mutltipliziere mit .
Schritt 4.3.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.3.2.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.3.1
Mutltipliziere mit .
Schritt 4.3.2.3.2
Mutltipliziere mit .
Schritt 4.3.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.3.2.5
Addiere und .
Schritt 4.4
Liste all Punkte auf.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 5