Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Kombiniere und .
Schritt 1.2.4
Kombiniere und .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Berechne .
Schritt 1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.4.3
Mutltipliziere mit .
Schritt 1.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.6
Vereine die Terme
Schritt 1.6.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.6.2
Kombiniere und .
Schritt 1.6.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.6.4
Mutltipliziere mit .
Schritt 1.6.5
Addiere und .
Schritt 1.6.6
Addiere und .
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Kombiniere und .
Schritt 2.2.4
Mutltipliziere mit .
Schritt 2.2.5
Kombiniere und .
Schritt 2.2.6
Kürze den gemeinsamen Teiler von und .
Schritt 2.2.6.1
Faktorisiere aus heraus.
Schritt 2.2.6.2
Kürze die gemeinsamen Faktoren.
Schritt 2.2.6.2.1
Faktorisiere aus heraus.
Schritt 2.2.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.6.2.3
Forme den Ausdruck um.
Schritt 2.2.6.2.4
Dividiere durch .
Schritt 2.3
Differenziere unter Anwendung der Konstantenregel.
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.2
Addiere und .
Schritt 3
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3
Mutltipliziere mit .
Schritt 4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .