Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Die Ableitung von nach ist .
Schritt 1.2.3
Mutltipliziere mit .
Schritt 1.3
Berechne .
Schritt 1.3.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.3.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.3.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.1.3
Ersetze alle durch .
Schritt 1.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.5
Addiere und .
Schritt 1.3.6
Mutltipliziere mit .
Schritt 1.4
Stelle die Terme um.
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.2.3
Ersetze alle durch .
Schritt 2.2.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.2.6
Addiere und .
Schritt 2.2.7
Mutltipliziere mit .
Schritt 2.2.8
Mutltipliziere mit .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Die Ableitung von nach ist .
Schritt 3
Schritt 3.1
Schreibe als um.
Schritt 3.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 3.2.1
Wende das Distributivgesetz an.
Schritt 3.2.2
Wende das Distributivgesetz an.
Schritt 3.2.3
Wende das Distributivgesetz an.
Schritt 3.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 3.3.1
Vereinfache jeden Term.
Schritt 3.3.1.1
Mutltipliziere mit .
Schritt 3.3.1.2
Bringe auf die linke Seite von .
Schritt 3.3.1.3
Mutltipliziere mit .
Schritt 3.3.2
Addiere und .
Schritt 3.4
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.5
Berechne .
Schritt 3.5.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.5.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.5.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.5.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.5.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.5.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.5.7
Mutltipliziere mit .
Schritt 3.5.8
Addiere und .
Schritt 3.6
Berechne .
Schritt 3.6.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.6.2
Die Ableitung von nach ist .
Schritt 3.6.3
Mutltipliziere mit .
Schritt 3.7
Vereinfache.
Schritt 3.7.1
Wende das Distributivgesetz an.
Schritt 3.7.2
Vereine die Terme
Schritt 3.7.2.1
Mutltipliziere mit .
Schritt 3.7.2.2
Mutltipliziere mit .