Analysis Beispiele

Third 도함수 구하기 y=3cos(x)+(x+2)^4
Schritt 1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Die Ableitung von nach ist .
Schritt 1.2.3
Mutltipliziere mit .
Schritt 1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.3.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.1.3
Ersetze alle durch .
Schritt 1.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.5
Addiere und .
Schritt 1.3.6
Mutltipliziere mit .
Schritt 1.4
Stelle die Terme um.
Schritt 2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.2.3
Ersetze alle durch .
Schritt 2.2.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.2.6
Addiere und .
Schritt 2.2.7
Mutltipliziere mit .
Schritt 2.2.8
Mutltipliziere mit .
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Die Ableitung von nach ist .
Schritt 3
Bestimme die dritte Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe als um.
Schritt 3.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Wende das Distributivgesetz an.
Schritt 3.2.2
Wende das Distributivgesetz an.
Schritt 3.2.3
Wende das Distributivgesetz an.
Schritt 3.3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1
Mutltipliziere mit .
Schritt 3.3.1.2
Bringe auf die linke Seite von .
Schritt 3.3.1.3
Mutltipliziere mit .
Schritt 3.3.2
Addiere und .
Schritt 3.4
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.5
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.5.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.5.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.5.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.5.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.5.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.5.7
Mutltipliziere mit .
Schritt 3.5.8
Addiere und .
Schritt 3.6
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.6.2
Die Ableitung von nach ist .
Schritt 3.6.3
Mutltipliziere mit .
Schritt 3.7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.7.1
Wende das Distributivgesetz an.
Schritt 3.7.2
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 3.7.2.1
Mutltipliziere mit .
Schritt 3.7.2.2
Mutltipliziere mit .