Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.2
Die Ableitung von nach ist .
Schritt 1.1.3
Ersetze alle durch .
Schritt 1.2
Differenziere.
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Vereinfache den Ausdruck.
Schritt 1.2.3.1
Mutltipliziere mit .
Schritt 1.2.3.2
Bringe auf die linke Seite von .
Schritt 2
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.2
Die Ableitung von nach ist .
Schritt 2.3.3
Ersetze alle durch .
Schritt 2.4
Potenziere mit .
Schritt 2.5
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.6
Differenziere.
Schritt 2.6.1
Addiere und .
Schritt 2.6.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.6.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.6.4
Vereinfache den Ausdruck.
Schritt 2.6.4.1
Mutltipliziere mit .
Schritt 2.6.4.2
Bringe auf die linke Seite von .
Schritt 2.7
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.7.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.7.2
Die Ableitung von nach ist .
Schritt 2.7.3
Ersetze alle durch .
Schritt 2.8
Potenziere mit .
Schritt 2.9
Potenziere mit .
Schritt 2.10
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.11
Addiere und .
Schritt 2.12
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.13
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.14
Vereinfache den Ausdruck.
Schritt 2.14.1
Mutltipliziere mit .
Schritt 2.14.2
Bringe auf die linke Seite von .
Schritt 2.15
Vereinfache.
Schritt 2.15.1
Wende das Distributivgesetz an.
Schritt 2.15.2
Vereine die Terme
Schritt 2.15.2.1
Mutltipliziere mit .
Schritt 2.15.2.2
Mutltipliziere mit .
Schritt 2.15.3
Stelle die Terme um.
Schritt 3
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Schritt 3.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 3.2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.3.2
Die Ableitung von nach ist .
Schritt 3.2.3.3
Ersetze alle durch .
Schritt 3.2.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.6
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.2.6.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.6.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.6.3
Ersetze alle durch .
Schritt 3.2.7
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.2.7.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.7.2
Die Ableitung von nach ist .
Schritt 3.2.7.3
Ersetze alle durch .
Schritt 3.2.8
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.10
Mutltipliziere mit .
Schritt 3.2.11
Bringe auf die linke Seite von .
Schritt 3.2.12
Multipliziere mit durch Addieren der Exponenten.
Schritt 3.2.12.1
Bewege .
Schritt 3.2.12.2
Mutltipliziere mit .
Schritt 3.2.12.2.1
Potenziere mit .
Schritt 3.2.12.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.12.3
Addiere und .
Schritt 3.2.13
Bringe auf die linke Seite von .
Schritt 3.2.14
Mutltipliziere mit .
Schritt 3.2.15
Bringe auf die linke Seite von .
Schritt 3.2.16
Mutltipliziere mit .
Schritt 3.2.17
Potenziere mit .
Schritt 3.2.18
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.19
Addiere und .
Schritt 3.3
Berechne .
Schritt 3.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.2.3
Ersetze alle durch .
Schritt 3.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.3.3.2
Die Ableitung von nach ist .
Schritt 3.3.3.3
Ersetze alle durch .
Schritt 3.3.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.6
Mutltipliziere mit .
Schritt 3.3.7
Bringe auf die linke Seite von .
Schritt 3.3.8
Mutltipliziere mit .
Schritt 3.3.9
Potenziere mit .
Schritt 3.3.10
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.3.11
Addiere und .
Schritt 3.3.12
Mutltipliziere mit .
Schritt 3.4
Vereinfache.
Schritt 3.4.1
Wende das Distributivgesetz an.
Schritt 3.4.2
Vereine die Terme
Schritt 3.4.2.1
Mutltipliziere mit .
Schritt 3.4.2.2
Mutltipliziere mit .
Schritt 3.4.2.3
Stelle die Faktoren von um.
Schritt 3.4.2.4
Addiere und .