Analysis Beispiele

Second 도함수 구하기 y=(cos(x))/(e^x)
Schritt 1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 1.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.2.2
Bringe auf die linke Seite von .
Schritt 1.3
Die Ableitung von nach ist .
Schritt 1.4
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 1.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.5.1.2
Stelle die Faktoren in um.
Schritt 1.5.2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.2.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.2.1.1
Faktorisiere aus heraus.
Schritt 1.5.2.1.2
Faktorisiere aus heraus.
Schritt 1.5.2.1.3
Faktorisiere aus heraus.
Schritt 1.5.2.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.2.2.1
Faktorisiere aus heraus.
Schritt 1.5.2.2.2
Faktorisiere aus heraus.
Schritt 1.5.2.2.3
Faktorisiere aus heraus.
Schritt 1.5.2.3
Faktorisiere das negative Vorzeichen heraus.
Schritt 1.5.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.3.1
Faktorisiere aus heraus.
Schritt 1.5.3.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.3.2.1
Multipliziere mit .
Schritt 1.5.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.5.3.2.3
Forme den Ausdruck um.
Schritt 1.5.3.2.4
Dividiere durch .
Schritt 1.5.4
Wende das Distributivgesetz an.
Schritt 2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.2.3
Die Ableitung von nach ist .
Schritt 2.2.4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.4.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.2.4.3
Ersetze alle durch .
Schritt 2.2.5
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.7
Mutltipliziere mit .
Schritt 2.2.8
Bringe auf die linke Seite von .
Schritt 2.2.9
Schreibe als um.
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.3.3
Die Ableitung von nach ist .
Schritt 2.3.4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.4.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.3.4.3
Ersetze alle durch .
Schritt 2.3.5
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.7
Mutltipliziere mit .
Schritt 2.3.8
Bringe auf die linke Seite von .
Schritt 2.3.9
Schreibe als um.
Schritt 2.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Wende das Distributivgesetz an.
Schritt 2.4.2
Wende das Distributivgesetz an.
Schritt 2.4.3
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.3.1
Mutltipliziere mit .
Schritt 2.4.3.2
Mutltipliziere mit .
Schritt 2.4.3.3
Mutltipliziere mit .
Schritt 2.4.3.4
Mutltipliziere mit .
Schritt 2.4.3.5
Mutltipliziere mit .
Schritt 2.4.3.6
Mutltipliziere mit .
Schritt 2.4.3.7
Addiere und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.3.7.1
Stelle und um.
Schritt 2.4.3.7.2
Addiere und .
Schritt 2.4.3.8
Addiere und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.3.8.1
Stelle und um.
Schritt 2.4.3.8.2
Addiere und .
Schritt 2.4.3.9
Addiere und .