Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.2.2
Die Ableitung von nach ist .
Schritt 1.2.3
Ersetze alle durch .
Schritt 1.3
Differenziere.
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Mutltipliziere mit .
Schritt 1.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.4
Mutltipliziere mit .
Schritt 2
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.2
Die Ableitung von nach ist .
Schritt 2.3.3
Ersetze alle durch .
Schritt 2.4
Potenziere mit .
Schritt 2.5
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.6
Differenziere.
Schritt 2.6.1
Addiere und .
Schritt 2.6.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.6.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.6.4
Vereinfache den Ausdruck.
Schritt 2.6.4.1
Mutltipliziere mit .
Schritt 2.6.4.2
Bringe auf die linke Seite von .
Schritt 2.7
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.7.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.7.2
Die Ableitung von nach ist .
Schritt 2.7.3
Ersetze alle durch .
Schritt 2.8
Potenziere mit .
Schritt 2.9
Potenziere mit .
Schritt 2.10
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.11
Addiere und .
Schritt 2.12
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.13
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.14
Vereinfache den Ausdruck.
Schritt 2.14.1
Mutltipliziere mit .
Schritt 2.14.2
Bringe auf die linke Seite von .
Schritt 2.15
Vereinfache.
Schritt 2.15.1
Wende das Distributivgesetz an.
Schritt 2.15.2
Vereine die Terme
Schritt 2.15.2.1
Mutltipliziere mit .
Schritt 2.15.2.2
Mutltipliziere mit .
Schritt 2.15.3
Stelle die Terme um.