Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.2.2
Die Ableitung von nach ist .
Schritt 1.2.3
Ersetze alle durch .
Schritt 1.3
Differenziere.
Schritt 1.3.1
Kombiniere und .
Schritt 1.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.5
Mutltipliziere mit .
Schritt 1.3.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.7
Vereinfache Terme.
Schritt 1.3.7.1
Addiere und .
Schritt 1.3.7.2
Kombiniere und .
Schritt 1.3.7.3
Bringe auf die linke Seite von .
Schritt 1.3.7.4
Kürze den gemeinsamen Teiler von und .
Schritt 1.3.7.4.1
Faktorisiere aus heraus.
Schritt 1.3.7.4.2
Kürze die gemeinsamen Faktoren.
Schritt 1.3.7.4.2.1
Faktorisiere aus heraus.
Schritt 1.3.7.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.3.7.4.2.3
Forme den Ausdruck um.
Schritt 2
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Ersetze alle durch .
Schritt 2.3
Vereinfache Terme.
Schritt 2.3.1
Kombiniere und .
Schritt 2.3.2
Kombiniere und .
Schritt 2.3.3
Bringe auf die linke Seite von .
Schritt 2.3.4
Kürze den gemeinsamen Faktor von .
Schritt 2.3.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.4.2
Dividiere durch .
Schritt 2.4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.4.2
Die Ableitung von nach ist .
Schritt 2.4.3
Ersetze alle durch .
Schritt 2.5
Potenziere mit .
Schritt 2.6
Potenziere mit .
Schritt 2.7
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.8
Addiere und .
Schritt 2.9
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.10
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.11
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.12
Mutltipliziere mit .
Schritt 2.13
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.14
Vereinfache den Ausdruck.
Schritt 2.14.1
Addiere und .
Schritt 2.14.2
Bringe auf die linke Seite von .