Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Wenn stetig im Intervall ist und differenzierbar im Intervall , dann gibt es mindestens eine reelle Zahl im Intervall derart, dass . Der Mittelwertsatz drückt das Verhältnis aus zwischen der Steigung der Tangente an die Kurve im Punkt und der Steigung der Geraden durch die Punkte und .
Wenn stetig im Intervall ist
und wenn im Intervall differenzierbar ist,
dann gibt es mindestens einen Punkt in : .
Schritt 2
Schritt 2.1
Um herauszufinden, ob die Funktion im Intervall stetig ist oder nicht, ermittle den Definitionsbereich von .
Schritt 2.1.1
Setze das Argument in größer als , um zu ermitteln. wo der Ausdruck definiert ist.
Schritt 2.1.2
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 2.2
ist stetig im Intervall .
Die Funktion ist stetig.
Die Funktion ist stetig.
Schritt 3
Schritt 3.1
Die Ableitung von nach ist .
Schritt 3.2
Die erste Ableitung von nach ist .
Schritt 4
Schritt 4.1
Um herauszufinden, ob die Funktion im Intervall stetig ist oder nicht, ermittle den Definitionsbereich von .
Schritt 4.1.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 4.1.2
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 4.2
ist stetig im Intervall .
Die Funktion ist stetig.
Die Funktion ist stetig.
Schritt 5
Die Funktion ist im Intervall differenzierbar, da die Ableitung im Intervall stetig ist.
Die Funktion ist differenzierbar.
Schritt 6
Die Funktion erfüllt die beiden Bedingungen des Mittelwertsatzes. Sie ist stetig im Intervall und differenzierbar im Intervall .
ist stetig im Intervall und differenzierbar im Intervall .
Schritt 7
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Schritt 7.2.1
Der natürliche Logarithmus von ist .
Schritt 7.2.2
Die endgültige Lösung ist .
Schritt 8
Schritt 8.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 8.2
Die endgültige Lösung ist .
Schritt 9
Schritt 9.1
Faktorisiere jeden Term.
Schritt 9.1.1
Mutltipliziere mit .
Schritt 9.1.2
Addiere und .
Schritt 9.1.3
Mutltipliziere mit .
Schritt 9.1.4
Subtrahiere von .
Schritt 9.1.5
Schreibe als um.
Schritt 9.1.6
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 9.2
Finde den Hauptnenner der Terme in der Gleichung.
Schritt 9.2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 9.2.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 9.3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Schritt 9.3.1
Multipliziere jeden Term in mit .
Schritt 9.3.2
Vereinfache die linke Seite.
Schritt 9.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 9.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 9.3.2.1.2
Forme den Ausdruck um.
Schritt 9.3.3
Vereinfache die rechte Seite.
Schritt 9.3.3.1
Stelle die Faktoren in um.
Schritt 9.4
Löse die Gleichung.
Schritt 9.4.1
Schreibe die Gleichung als um.
Schritt 9.4.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 9.4.2.1
Teile jeden Ausdruck in durch .
Schritt 9.4.2.2
Vereinfache die linke Seite.
Schritt 9.4.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 9.4.2.2.2
Dividiere durch .
Schritt 10
Es gibt eine Tangente bei parallel zur Geraden, die durch die Endpunkte und verläuft.
Es gibt eine Tangente bei parallel zur Geraden, die durch die Endpunkte und verläuft
Schritt 11