Gib eine Aufgabe ein ...
Analysis Beispiele
;
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Bestimme die erste Ableitung.
Schritt 1.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.2
Berechne .
Schritt 1.1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.2.3
Kombiniere und .
Schritt 1.1.1.2.4
Mutltipliziere mit .
Schritt 1.1.1.2.5
Kombiniere und .
Schritt 1.1.1.2.6
Kürze den gemeinsamen Teiler von und .
Schritt 1.1.1.2.6.1
Faktorisiere aus heraus.
Schritt 1.1.1.2.6.2
Kürze die gemeinsamen Faktoren.
Schritt 1.1.1.2.6.2.1
Faktorisiere aus heraus.
Schritt 1.1.1.2.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.1.1.2.6.2.3
Forme den Ausdruck um.
Schritt 1.1.1.2.6.2.4
Dividiere durch .
Schritt 1.1.1.3
Berechne .
Schritt 1.1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.3.3
Mutltipliziere mit .
Schritt 1.1.2
Die erste Ableitung von nach ist .
Schritt 1.2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Schritt 1.2.1
Setze die erste Ableitung gleich .
Schritt 1.2.2
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.2.3.1
Teile jeden Ausdruck in durch .
Schritt 1.2.3.2
Vereinfache die linke Seite.
Schritt 1.2.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.2.1.2
Dividiere durch .
Schritt 1.2.3.3
Vereinfache die rechte Seite.
Schritt 1.2.3.3.1
Dividiere durch .
Schritt 1.2.4
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 1.2.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 1.2.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 1.2.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 1.2.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 1.3
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Schritt 1.3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 1.4
Werte an jeden Wert aus, wo die Ableitung ist oder nicht definiert ist.
Schritt 1.4.1
Berechne bei .
Schritt 1.4.1.1
Ersetze durch .
Schritt 1.4.1.2
Vereinfache.
Schritt 1.4.1.2.1
Vereinfache jeden Term.
Schritt 1.4.1.2.1.1
Schreibe als um.
Schritt 1.4.1.2.1.2
Potenziere mit .
Schritt 1.4.1.2.1.3
Schreibe als um.
Schritt 1.4.1.2.1.3.1
Faktorisiere aus heraus.
Schritt 1.4.1.2.1.3.2
Schreibe als um.
Schritt 1.4.1.2.1.4
Ziehe Terme aus der Wurzel heraus.
Schritt 1.4.1.2.1.5
Kürze den gemeinsamen Faktor von .
Schritt 1.4.1.2.1.5.1
Faktorisiere aus heraus.
Schritt 1.4.1.2.1.5.2
Kürze den gemeinsamen Faktor.
Schritt 1.4.1.2.1.5.3
Forme den Ausdruck um.
Schritt 1.4.1.2.2
Subtrahiere von .
Schritt 1.4.2
Berechne bei .
Schritt 1.4.2.1
Ersetze durch .
Schritt 1.4.2.2
Vereinfache.
Schritt 1.4.2.2.1
Vereinfache jeden Term.
Schritt 1.4.2.2.1.1
Wende die Produktregel auf an.
Schritt 1.4.2.2.1.2
Potenziere mit .
Schritt 1.4.2.2.1.3
Schreibe als um.
Schritt 1.4.2.2.1.4
Potenziere mit .
Schritt 1.4.2.2.1.5
Schreibe als um.
Schritt 1.4.2.2.1.5.1
Faktorisiere aus heraus.
Schritt 1.4.2.2.1.5.2
Schreibe als um.
Schritt 1.4.2.2.1.6
Ziehe Terme aus der Wurzel heraus.
Schritt 1.4.2.2.1.7
Kürze den gemeinsamen Faktor von .
Schritt 1.4.2.2.1.7.1
Faktorisiere aus heraus.
Schritt 1.4.2.2.1.7.2
Kürze den gemeinsamen Faktor.
Schritt 1.4.2.2.1.7.3
Forme den Ausdruck um.
Schritt 1.4.2.2.1.8
Mutltipliziere mit .
Schritt 1.4.2.2.1.9
Mutltipliziere mit .
Schritt 1.4.2.2.2
Addiere und .
Schritt 1.4.3
Liste all Punkte auf.
Schritt 2
Schritt 2.1
Berechne bei .
Schritt 2.1.1
Ersetze durch .
Schritt 2.1.2
Vereinfache.
Schritt 2.1.2.1
Vereinfache jeden Term.
Schritt 2.1.2.1.1
Potenziere mit .
Schritt 2.1.2.1.2
Multipliziere .
Schritt 2.1.2.1.2.1
Kombiniere und .
Schritt 2.1.2.1.2.2
Mutltipliziere mit .
Schritt 2.1.2.1.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.1.2.1.4
Mutltipliziere mit .
Schritt 2.1.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.1.2.3
Kombiniere und .
Schritt 2.1.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.1.2.5
Vereinfache den Zähler.
Schritt 2.1.2.5.1
Mutltipliziere mit .
Schritt 2.1.2.5.2
Addiere und .
Schritt 2.2
Berechne bei .
Schritt 2.2.1
Ersetze durch .
Schritt 2.2.2
Vereinfache.
Schritt 2.2.2.1
Vereinfache jeden Term.
Schritt 2.2.2.1.1
Potenziere mit .
Schritt 2.2.2.1.2
Multipliziere .
Schritt 2.2.2.1.2.1
Kombiniere und .
Schritt 2.2.2.1.2.2
Mutltipliziere mit .
Schritt 2.2.2.1.3
Mutltipliziere mit .
Schritt 2.2.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.2.2.3
Kombiniere und .
Schritt 2.2.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.2.5
Vereinfache den Zähler.
Schritt 2.2.2.5.1
Mutltipliziere mit .
Schritt 2.2.2.5.2
Subtrahiere von .
Schritt 2.2.2.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3
Liste all Punkte auf.
Schritt 3
Vergleiche die für jeden Wert von gefundenen -Werte, um das absolute Maximum und das absolute Minimum im angegebenen Intervall zu bestimmen. Das Maximum wird beim größten -Wert und das Minimum beim niedrigsten -Wert auftreten.
Absolutes Maximum:
Absolutes Minimum:
Schritt 4