Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Die Ableitung von nach ist .
Schritt 3
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 3.3
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 3.4
Differenziere unter Anwendung der Potenzregel.
Schritt 3.4.1
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4.2
Mutltipliziere mit .
Schritt 3.5
Vereinfache.
Schritt 3.5.1
Wende das Distributivgesetz an.
Schritt 3.5.2
Stelle die Terme um.
Schritt 3.5.3
Stelle die Faktoren in um.
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Ersetze durch .
Schritt 6
Ersetze durch und durch in dem Ausdruck.
Schritt 7
Schritt 7.1
Vereinfache jeden Term.
Schritt 7.1.1
Mutltipliziere mit .
Schritt 7.1.2
Alles, was mit potenziert wird, ist .
Schritt 7.1.3
Mutltipliziere mit .
Schritt 7.1.4
Alles, was mit potenziert wird, ist .
Schritt 7.1.5
Mutltipliziere mit .
Schritt 7.2
Addiere und .