Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Kehre das Vorzeichen des Exponenten von um und ziehe es aus dem Nenner heraus.
Schritt 1.2
Multipliziere die Exponenten in .
Schritt 1.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.2.2
Bringe auf die linke Seite von .
Schritt 1.2.3
Schreibe als um.
Schritt 2
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 3
Schritt 3.1
Kombiniere und .
Schritt 3.2
Kombiniere und .
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Schritt 5.1
Mutltipliziere mit .
Schritt 5.2
Mutltipliziere mit .
Schritt 6
Schritt 6.1
Es sei . Ermittle .
Schritt 6.1.1
Differenziere .
Schritt 6.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 6.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 6.1.4
Mutltipliziere mit .
Schritt 6.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Das Integral von nach ist .
Schritt 9
Schreibe als um.
Schritt 10
Ersetze alle durch .
Schritt 11
Stelle die Terme um.