Analysis Beispiele

Bestimme das Integral (25-x^2)^(1/2)
Schritt 1
Wende die Regel an, um die Potenz als Wurzel umzuschreiben.
Schritt 2
Sei , mit . Dann ist . Beachte, dass wegen , positiv ist.
Schritt 3
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1.1
Wende die Produktregel auf an.
Schritt 3.1.1.2
Potenziere mit .
Schritt 3.1.1.3
Mutltipliziere mit .
Schritt 3.1.2
Faktorisiere aus heraus.
Schritt 3.1.3
Faktorisiere aus heraus.
Schritt 3.1.4
Faktorisiere aus heraus.
Schritt 3.1.5
Wende den trigonometrischen Pythagoras an.
Schritt 3.1.6
Vereinfache.
Schritt 3.1.7
Schreibe als um.
Schritt 3.1.8
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 3.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Mutltipliziere mit .
Schritt 3.2.2
Potenziere mit .
Schritt 3.2.3
Potenziere mit .
Schritt 3.2.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.5
Addiere und .
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Benutze die Halbwinkelformel, um als neu zu schreiben.
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Kombiniere und .
Schritt 8
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 9
Wende die Konstantenregel an.
Schritt 10
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1.1
Differenziere .
Schritt 10.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 10.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 10.1.4
Mutltipliziere mit .
Schritt 10.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 11
Kombiniere und .
Schritt 12
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 13
Das Integral von nach ist .
Schritt 14
Vereinfache.
Schritt 15
Setze für jede eingesetzte Integrationsvariable neu ein.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.1
Ersetze alle durch .
Schritt 15.2
Ersetze alle durch .
Schritt 15.3
Ersetze alle durch .
Schritt 16
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 16.1
Kombiniere und .
Schritt 16.2
Wende das Distributivgesetz an.
Schritt 16.3
Kombiniere und .
Schritt 16.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 16.4.1
Mutltipliziere mit .
Schritt 16.4.2
Mutltipliziere mit .
Schritt 17
Stelle die Terme um.