Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.2.2
Die Ableitung von nach ist .
Schritt 1.2.3
Ersetze alle durch .
Schritt 1.3
Differenziere.
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Vereinfache den Ausdruck.
Schritt 1.3.3.1
Mutltipliziere mit .
Schritt 1.3.3.2
Bringe auf die linke Seite von .
Schritt 1.4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.4.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 1.4.3
Ersetze alle durch .
Schritt 1.5
Differenziere.
Schritt 1.5.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.5.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.5.3
Vereinfache den Ausdruck.
Schritt 1.5.3.1
Mutltipliziere mit .
Schritt 1.5.3.2
Bringe auf die linke Seite von .
Schritt 1.5.3.3
Stelle die Terme um.
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.3.2
Die Ableitung von nach ist .
Schritt 2.2.3.3
Ersetze alle durch .
Schritt 2.2.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.6
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.2.6.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.6.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.2.6.3
Ersetze alle durch .
Schritt 2.2.7
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.9
Mutltipliziere mit .
Schritt 2.2.10
Mutltipliziere mit .
Schritt 2.2.11
Mutltipliziere mit .
Schritt 2.2.12
Bringe auf die linke Seite von .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.3.2
Die Ableitung von nach ist .
Schritt 2.3.3.3
Ersetze alle durch .
Schritt 2.3.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.6
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.6.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.6.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.3.6.3
Ersetze alle durch .
Schritt 2.3.7
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.9
Mutltipliziere mit .
Schritt 2.3.10
Bringe auf die linke Seite von .
Schritt 2.3.11
Mutltipliziere mit .
Schritt 2.3.12
Bringe auf die linke Seite von .
Schritt 2.4
Vereinfache.
Schritt 2.4.1
Wende das Distributivgesetz an.
Schritt 2.4.2
Wende das Distributivgesetz an.
Schritt 2.4.3
Vereine die Terme
Schritt 2.4.3.1
Mutltipliziere mit .
Schritt 2.4.3.2
Mutltipliziere mit .
Schritt 2.4.3.3
Mutltipliziere mit .
Schritt 2.4.3.4
Mutltipliziere mit .
Schritt 2.4.3.5
Subtrahiere von .
Schritt 2.4.3.5.1
Bewege .
Schritt 2.4.3.5.2
Subtrahiere von .
Schritt 2.4.3.6
Addiere und .
Schritt 2.4.3.6.1
Bewege .
Schritt 2.4.3.6.2
Addiere und .
Schritt 3
Die zweite Ableitung von nach ist .