Analysis Beispiele

Fourth 도함수 구하기 f(x)=5x^3-7e^x
Schritt 1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Mutltipliziere mit .
Schritt 1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 3
Bestimme die dritte Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Mutltipliziere mit .
Schritt 3.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 4
Bestimme die vierte Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.2.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 4.3
Subtrahiere von .
Schritt 5
Die vierte Ableitung von nach ist .