Analysis Beispiele

Ermittle die Stammfunktion 1/(sec(theta)^2)
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Schreibe als um.
Schritt 4.2
Schreibe als um.
Schritt 4.3
Schreibe mithilfe von Sinus und Kosinus um.
Schritt 4.4
Multipliziere mit dem Kehrwert des Bruchs, um durch zu dividieren.
Schritt 4.5
Mutltipliziere mit .
Schritt 5
Benutze die Halbwinkelformel, um als neu zu schreiben.
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 8
Wende die Konstantenregel an.
Schritt 9
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.1
Differenziere .
Schritt 9.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 9.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 9.1.4
Mutltipliziere mit .
Schritt 9.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 10
Kombiniere und .
Schritt 11
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 12
Das Integral von nach ist .
Schritt 13
Vereinfache.
Schritt 14
Ersetze alle durch .
Schritt 15
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.1
Kombiniere und .
Schritt 15.2
Wende das Distributivgesetz an.
Schritt 15.3
Kombiniere und .
Schritt 15.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 15.4.1
Mutltipliziere mit .
Schritt 15.4.2
Mutltipliziere mit .
Schritt 16
Stelle die Terme um.
Schritt 17
Die Lösung ist die Stammfunktion der Funktion .