Analysis Beispiele

Ermittle die Stammfunktion (1+1/x)^2
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Schreibe als um.
Schritt 4.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Wende das Distributivgesetz an.
Schritt 4.2.2
Wende das Distributivgesetz an.
Schritt 4.2.3
Wende das Distributivgesetz an.
Schritt 4.3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1.1
Mutltipliziere mit .
Schritt 4.3.1.2
Mutltipliziere mit .
Schritt 4.3.1.3
Mutltipliziere mit .
Schritt 4.3.1.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1.4.1
Mutltipliziere mit .
Schritt 4.3.1.4.2
Potenziere mit .
Schritt 4.3.1.4.3
Potenziere mit .
Schritt 4.3.1.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.3.1.4.5
Addiere und .
Schritt 4.3.2
Addiere und .
Schritt 4.4
Kombiniere und .
Schritt 5
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 6
Wende die Konstantenregel an.
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Das Integral von nach ist .
Schritt 9
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 9.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 9.2.2
Mutltipliziere mit .
Schritt 10
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 11
Vereinfache.
Schritt 12
Die Lösung ist die Stammfunktion der Funktion .