Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Schritt 4.1
Faktorisiere aus heraus.
Schritt 4.2
Kürze die gemeinsamen Faktoren.
Schritt 4.2.1
Faktorisiere aus heraus.
Schritt 4.2.2
Faktorisiere aus heraus.
Schritt 4.2.3
Faktorisiere aus heraus.
Schritt 4.2.4
Kürze den gemeinsamen Faktor.
Schritt 4.2.5
Forme den Ausdruck um.
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Schritt 6.1
Es sei . Ermittle .
Schritt 6.1.1
Differenziere .
Schritt 6.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 6.1.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 6.1.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 6.1.5
Addiere und .
Schritt 6.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 7
Das Integral von nach ist .
Schritt 8
Vereinfache.
Schritt 9
Ersetze alle durch .
Schritt 10
Die Lösung ist die Stammfunktion der Funktion .