Analysis Beispiele

Berechne unter Anwendung der Regel von de l’Hospital Grenzwert von (tan(6t))/(sin(2t)), wenn t gegen 0 geht
Schritt 1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.2
Berechne den Grenzwert des Zählers.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1
Bringe den Grenzwert in die trigonometrische Funktion, da der Tangens stetig ist.
Schritt 1.2.1.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.2.3
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Mutltipliziere mit .
Schritt 1.2.3.2
Der genau Wert von ist .
Schritt 1.3
Berechne den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.1
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 1.3.1.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.3.3
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.1
Mutltipliziere mit .
Schritt 1.3.3.2
Der genau Wert von ist .
Schritt 1.3.3.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Differenziere den Zähler und Nenner.
Schritt 3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2
Die Ableitung von nach ist .
Schritt 3.2.3
Ersetze alle durch .
Schritt 3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.5
Mutltipliziere mit .
Schritt 3.6
Bringe auf die linke Seite von .
Schritt 3.7
Mutltipliziere mit .
Schritt 3.8
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.8.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.8.2
Die Ableitung von nach ist .
Schritt 3.8.3
Ersetze alle durch .
Schritt 3.9
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.10
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.11
Mutltipliziere mit .
Schritt 3.12
Bringe auf die linke Seite von .
Schritt 3.13
Mutltipliziere mit .
Schritt 4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Faktorisiere aus heraus.
Schritt 4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Faktorisiere aus heraus.
Schritt 4.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.2.3
Forme den Ausdruck um.
Schritt 5
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 6
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 7
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 8
Bringe den Grenzwert in die trigonometrische Funktion, da der Sekans ist stetig.
Schritt 9
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 10
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 11
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 12
Berechne die Grenzwerte durch Einsetzen von für alle .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 12.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 13
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1.1
Mutltipliziere mit .
Schritt 13.1.2
Der genau Wert von ist .
Schritt 13.1.3
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 13.2
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.2.1
Mutltipliziere mit .
Schritt 13.2.2
Der genau Wert von ist .
Schritt 13.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 13.3.1
Kürze den gemeinsamen Faktor.
Schritt 13.3.2
Forme den Ausdruck um.
Schritt 13.4
Mutltipliziere mit .