Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.2
Der Grenzwert im Unendlichen eines Polynoms, dessen Leitkoeffizient positiv ist, ist unendlich.
Schritt 1.3
Berechne den Grenzwert des Nenners.
Schritt 1.3.1
Stelle und um.
Schritt 1.3.2
Der Grenzwert eines Polynoms, dessen Leitkoeffizient negativ ist, bei unendlich, ist minus unendlich.
Schritt 1.3.3
Unendlich durch Unendlich geteilt ist nicht definiert.
Undefiniert
Schritt 1.4
Unendlich durch Unendlich geteilt ist nicht definiert.
Undefiniert
Schritt 2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3
Schritt 3.1
Differenziere den Zähler und Nenner.
Schritt 3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3
Berechne .
Schritt 3.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.3
Mutltipliziere mit .
Schritt 3.4
Berechne .
Schritt 3.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4.3
Mutltipliziere mit .
Schritt 3.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.6
Addiere und .
Schritt 3.7
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.8
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.9
Berechne .
Schritt 3.9.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.9.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.9.3
Mutltipliziere mit .
Schritt 3.10
Subtrahiere von .
Schritt 4
Schritt 4.1
Bringe die negative Eins aus dem Nenner von .
Schritt 4.2
Wende das Distributivgesetz an.
Schritt 4.3
Multipliziere.
Schritt 4.3.1
Mutltipliziere mit .
Schritt 4.3.2
Mutltipliziere mit .
Schritt 5
Der Grenzwert eines Polynoms, dessen Leitkoeffizient negativ ist, bei unendlich, ist minus unendlich.