Analysis Beispiele

Ermittle die Wendepunkte 12x^2-12sin(2x)
Schritt 1
Schreibe als Funktion.
Schritt 2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.3
Mutltipliziere mit .
Schritt 2.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.1.3.2.2
Die Ableitung von nach ist .
Schritt 2.1.3.2.3
Ersetze alle durch .
Schritt 2.1.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.3.5
Mutltipliziere mit .
Schritt 2.1.3.6
Bringe auf die linke Seite von .
Schritt 2.1.3.7
Mutltipliziere mit .
Schritt 2.2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.2.3
Mutltipliziere mit .
Schritt 2.2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.3.2.2
Die Ableitung von nach ist .
Schritt 2.2.3.2.3
Ersetze alle durch .
Schritt 2.2.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3.5
Mutltipliziere mit .
Schritt 2.2.3.6
Mutltipliziere mit .
Schritt 2.2.3.7
Mutltipliziere mit .
Schritt 2.3
Die zweite Ableitung von nach ist .
Schritt 3
Setze die zweite Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze die zweite Ableitung gleich .
Schritt 3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Teile jeden Ausdruck in durch .
Schritt 3.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.1.2
Dividiere durch .
Schritt 3.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.1.1
Faktorisiere aus heraus.
Schritt 3.3.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.1.2.1
Faktorisiere aus heraus.
Schritt 3.3.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.3.1.2.3
Forme den Ausdruck um.
Schritt 3.3.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.4
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 3.5
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Der genau Wert von ist .
Schritt 3.6
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.1
Teile jeden Ausdruck in durch .
Schritt 3.6.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.6.2.1.2
Dividiere durch .
Schritt 3.6.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 3.6.3.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.3.2.1
Mutltipliziere mit .
Schritt 3.6.3.2.2
Mutltipliziere mit .
Schritt 3.7
Die Sinusfunktion ist negativ im dritten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere die Lösung von , um einen Referenzwinkel zu ermitteln. Addiere als nächstes diesen Referenzwinkel zu , um die Lösung im dritten Quadranten zu finden.
Schritt 3.8
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.8.1
Subtrahiere von .
Schritt 3.8.2
Der resultierende Winkel von ist positiv, kleiner als und gleich .
Schritt 3.8.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.8.3.1
Teile jeden Ausdruck in durch .
Schritt 3.8.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.8.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.8.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.8.3.2.1.2
Dividiere durch .
Schritt 3.8.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.8.3.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 3.8.3.3.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.8.3.3.2.1
Mutltipliziere mit .
Schritt 3.8.3.3.2.2
Mutltipliziere mit .
Schritt 3.9
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.9.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 3.9.2
Ersetze durch in der Formel für die Periode.
Schritt 3.9.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.9.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.9.4.1
Kürze den gemeinsamen Faktor.
Schritt 3.9.4.2
Dividiere durch .
Schritt 3.10
Addiere zu jedem negativen Winkel, um positive Winkel zu erhalten.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.10.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 3.10.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.10.3
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.10.3.1
Kombiniere und .
Schritt 3.10.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.10.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.10.4.1
Bringe auf die linke Seite von .
Schritt 3.10.4.2
Subtrahiere von .
Schritt 3.10.5
Liste die neuen Winkel auf.
Schritt 3.11
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 4
Bestimme die Punkte, an denen die zweite Ableitung gleich ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze in , um den Wert von zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.1.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1.1
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1.1.1
Wende die Produktregel auf an.
Schritt 4.1.2.1.1.2
Wende die Produktregel auf an.
Schritt 4.1.2.1.2
Potenziere mit .
Schritt 4.1.2.1.3
Potenziere mit .
Schritt 4.1.2.1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1.4.1
Faktorisiere aus heraus.
Schritt 4.1.2.1.4.2
Kürze den gemeinsamen Faktor.
Schritt 4.1.2.1.4.3
Forme den Ausdruck um.
Schritt 4.1.2.1.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1.5.1
Faktorisiere aus heraus.
Schritt 4.1.2.1.5.2
Kürze den gemeinsamen Faktor.
Schritt 4.1.2.1.5.3
Forme den Ausdruck um.
Schritt 4.1.2.1.6
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Sinus im dritten Quadranten negativ ist.
Schritt 4.1.2.1.7
Der genau Wert von ist .
Schritt 4.1.2.1.8
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1.8.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 4.1.2.1.8.2
Faktorisiere aus heraus.
Schritt 4.1.2.1.8.3
Kürze den gemeinsamen Faktor.
Schritt 4.1.2.1.8.4
Forme den Ausdruck um.
Schritt 4.1.2.1.9
Mutltipliziere mit .
Schritt 4.1.2.2
Die endgültige Lösung ist .
Schritt 4.2
Der Punkt, der durch Einsetzen von in ermittelt werden kann, ist . Dieser Punkt kann ein Wendepunkt sein.
Schritt 4.3
Ersetze in , um den Wert von zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.1
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.1.1
Wende die Produktregel auf an.
Schritt 4.3.2.1.1.2
Wende die Produktregel auf an.
Schritt 4.3.2.1.2
Potenziere mit .
Schritt 4.3.2.1.3
Potenziere mit .
Schritt 4.3.2.1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.4.1
Faktorisiere aus heraus.
Schritt 4.3.2.1.4.2
Kürze den gemeinsamen Faktor.
Schritt 4.3.2.1.4.3
Forme den Ausdruck um.
Schritt 4.3.2.1.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.5.1
Faktorisiere aus heraus.
Schritt 4.3.2.1.5.2
Kürze den gemeinsamen Faktor.
Schritt 4.3.2.1.5.3
Forme den Ausdruck um.
Schritt 4.3.2.1.6
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Sinus im vierten Quadranten negativ ist.
Schritt 4.3.2.1.7
Der genau Wert von ist .
Schritt 4.3.2.1.8
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.8.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 4.3.2.1.8.2
Faktorisiere aus heraus.
Schritt 4.3.2.1.8.3
Kürze den gemeinsamen Faktor.
Schritt 4.3.2.1.8.4
Forme den Ausdruck um.
Schritt 4.3.2.1.9
Mutltipliziere mit .
Schritt 4.3.2.2
Die endgültige Lösung ist .
Schritt 4.4
Der Punkt, der durch Einsetzen von in ermittelt werden kann, ist . Dieser Punkt kann ein Wendepunkt sein.
Schritt 4.5
Bestimme die Punkte, die Wendepunkte sein könnten.
Schritt 5
Teile in Intervalle um die Punkte herum, die potentiell Wendepunkte sein könnten.
Schritt 6
Setze einen Wert aus dem Intervall in die zweite Ableitung ein, um festzustellen, ob sie ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Mutltipliziere mit .
Schritt 6.2.2
Die endgültige Lösung ist .
Schritt 6.3
Bei ist die zweite Ableitung . Da dies positiv ist, steigt die zweite Ableitung auf dem Intervall .
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 7
Setze einen Wert aus dem Intervall in die zweite Ableitung ein, um festzustellen, ob sie ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Mutltipliziere mit .
Schritt 7.2.2
Die endgültige Lösung ist .
Schritt 7.3
Bei , die zweite Ableitung ist . Da diese negativ ist, fällt die zweite Ableitung im Intervall
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 8
Setze einen Wert aus dem Intervall in die zweite Ableitung ein, um festzustellen, ob sie ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 8.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Mutltipliziere mit .
Schritt 8.2.2
Die endgültige Lösung ist .
Schritt 8.3
Bei ist die zweite Ableitung . Da dies positiv ist, steigt die zweite Ableitung auf dem Intervall .
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 9
Ein Wendepunkt ist ein Punkt auf einer Kurve, an dem die Konkavität das Vorzeichen von Plus zu Minus oder von Minus zu Plus ändert. In diesem Fall sind die Wendepunkte .
Schritt 10