Analysis Beispiele

Ermitteln, wo ansteigend/abfallend mittels Ableitungen Logarithmische Basis 5 von 1+x^2
Schritt 1
Schreibe als Funktion.
Schritt 2
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.1.1.2
Die Ableitung von nach ist .
Schritt 2.1.1.3
Ersetze alle durch .
Schritt 2.1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.2.3
Addiere und .
Schritt 2.1.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.5
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.5.1
Kombiniere und .
Schritt 2.1.2.5.2
Kombiniere und .
Schritt 2.1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.1
Wende das Distributivgesetz an.
Schritt 2.1.3.2
Mutltipliziere mit .
Schritt 2.1.3.3
Stelle die Terme um.
Schritt 2.2
Die erste Ableitung von nach ist .
Schritt 3
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze die erste Ableitung gleich .
Schritt 3.2
Setze den Zähler gleich Null.
Schritt 3.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Teile jeden Ausdruck in durch .
Schritt 3.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.1.2
Dividiere durch .
Schritt 3.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.1
Dividiere durch .
Schritt 4
Die Werte, die die Ableitung gleich machen, sind .
Schritt 5
Nach dem Auffinden des Punktes, der die Ableitung gleich oder undefiniert macht, ist das Intervall, in dem geprüft werden muss, wo ansteigt und abfällt, gleich .
Schritt 6
Setze einen Wert aus dem Intervall in die Ableitung ein, um zu bestimmen, ob die Funktion ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Mutltipliziere mit .
Schritt 6.2.2
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1
Potenziere mit .
Schritt 6.2.2.2
Mutltipliziere mit .
Schritt 6.2.2.3
Wende die Produktregel für Logarithmen an, .
Schritt 6.2.2.4
Mutltipliziere mit .
Schritt 6.2.3
Schreibe als um.
Schritt 6.2.4
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 6.2.5
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.5.1
Faktorisiere aus heraus.
Schritt 6.2.5.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.5.2.1
Faktorisiere aus heraus.
Schritt 6.2.5.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.2.5.2.3
Forme den Ausdruck um.
Schritt 6.2.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 6.2.7
Die endgültige Lösung ist .
Schritt 6.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 7
Setze einen Wert aus dem Intervall in die Ableitung ein, um zu bestimmen, ob die Funktion ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Mutltipliziere mit .
Schritt 7.2.2
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 7.2.2.2
Mutltipliziere mit .
Schritt 7.2.2.3
Wende die Produktregel für Logarithmen an, .
Schritt 7.2.2.4
Mutltipliziere mit .
Schritt 7.2.3
Schreibe als um.
Schritt 7.2.4
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 7.2.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.5.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.5.2
Forme den Ausdruck um.
Schritt 7.2.6
Die endgültige Lösung ist .
Schritt 7.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 8
Liste die Intervalle auf, in denen die Funktion ansteigt und in denen sie abfällt.
Ansteigend im Intervall:
Abfallend im Intervall:
Schritt 9