Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Schritt 2.1
Bestimme die erste Ableitung.
Schritt 2.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2
Berechne .
Schritt 2.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.3
Mutltipliziere mit .
Schritt 2.1.3
Differenziere unter Anwendung der Konstantenregel.
Schritt 2.1.3.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.3.2
Addiere und .
Schritt 2.2
Die erste Ableitung von nach ist .
Schritt 3
Schritt 3.1
Setze die erste Ableitung gleich .
Schritt 3.2
Da , gibt es keine Lösungen.
Keine Lösung
Keine Lösung
Schritt 4
Es gibt keine Werte von im Definitionsbereich, wo die Ableitung ist oder nicht definiert ist.
Keine kritischen Punkte gefunden
Schritt 5
An keinem Punkt ist die Ableitung gleich oder nicht definiert. Das Intervall, für das zu prüfen ist, ob ansteigt oder abfällt, ist .
Schritt 6
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Die endgültige Lösung ist .
Schritt 7
Das Ergebnis des Einsetzens von in ist , was positiv ist, folglich ist der Graph im Intervall ansteigend.
Ansteigend im Intervall , da
Schritt 8
Ansteigend im Intervall bedeutet, dass die Funktion immer ansteigt.
Immer ansteigend
Schritt 9