Analysis Beispiele

연쇄 법칙을 사용하여 미분 구하기 - d/dt y = natural log of |1+t-t^3|
Schritt 1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.2
Die Ableitung von nach ist .
Schritt 1.3
Ersetze alle durch .
Schritt 2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2
Die Ableitung von nach ist .
Schritt 2.3
Ersetze alle durch .
Schritt 3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.3
Addiere und .
Schritt 3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.5
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.7
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.7.1
Mutltipliziere mit .
Schritt 3.7.2
Stelle die Faktoren von um.
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Mutltipliziere mit .
Schritt 4.1.2
Um Absolutwerte zu multiplizieren, multipliziere die Terme innerhalb jedes Absolutwerts.
Schritt 4.1.3
Potenziere mit .
Schritt 4.1.4
Potenziere mit .
Schritt 4.1.5
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.1.6
Addiere und .
Schritt 4.2
Stelle die Faktoren von um.