Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Die Ableitung von nach ist .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Stelle die Terme um.
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.2.3
Ersetze alle durch .
Schritt 2.3.3
Die Ableitung von nach ist .
Schritt 2.3.4
Mutltipliziere mit .
Schritt 2.3.5
Potenziere mit .
Schritt 2.3.6
Potenziere mit .
Schritt 2.3.7
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.3.8
Addiere und .
Schritt 2.3.9
Mutltipliziere mit .
Schritt 2.4
Stelle die Terme um.