Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Schritt 2.1
Bestimme die erste Ableitung.
Schritt 2.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2
Berechne .
Schritt 2.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.3
Kombiniere und .
Schritt 2.1.2.4
Kombiniere und .
Schritt 2.1.2.5
Kürze den gemeinsamen Faktor von .
Schritt 2.1.2.5.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.5.2
Dividiere durch .
Schritt 2.1.3
Berechne .
Schritt 2.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.3.2
Die Ableitung von nach ist .
Schritt 2.2
Bestimme die zweite Ableitung.
Schritt 2.2.1
Differenziere.
Schritt 2.2.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.2
Berechne .
Schritt 2.2.2.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.2.2.2
Schreibe als um.
Schritt 2.2.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.2.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.2.2.5
Mutltipliziere mit .
Schritt 2.2.2.6
Mutltipliziere mit .
Schritt 2.2.2.7
Mutltipliziere mit .
Schritt 2.2.2.8
Addiere und .
Schritt 2.2.3
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2.2.4
Stelle die Terme um.
Schritt 2.3
Die zweite Ableitung von nach ist .
Schritt 3
Schritt 3.1
Setze die zweite Ableitung gleich .
Schritt 3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.3
Finde den Hauptnenner der Terme in der Gleichung.
Schritt 3.3.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 3.3.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 3.4
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Schritt 3.4.1
Multipliziere jeden Term in mit .
Schritt 3.4.2
Vereinfache die linke Seite.
Schritt 3.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.1.2
Forme den Ausdruck um.
Schritt 3.5
Löse die Gleichung.
Schritt 3.5.1
Schreibe die Gleichung als um.
Schritt 3.5.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.5.2.1
Teile jeden Ausdruck in durch .
Schritt 3.5.2.2
Vereinfache die linke Seite.
Schritt 3.5.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 3.5.2.2.2
Dividiere durch .
Schritt 3.5.2.3
Vereinfache die rechte Seite.
Schritt 3.5.2.3.1
Dividiere durch .
Schritt 3.5.3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.5.4
Schreibe als um.
Schritt 3.5.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3.5.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.5.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.5.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4
Keine Werte gefunden, die die zweite Ableitung gleich machen.
Keine Wendepunkte