Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Berechne .
Schritt 1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Kombiniere und .
Schritt 1.1.2.4
Kombiniere und .
Schritt 1.1.2.5
Kürze den gemeinsamen Faktor von .
Schritt 1.1.2.5.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.2.5.2
Dividiere durch .
Schritt 1.1.3
Berechne .
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.1.4
Berechne .
Schritt 1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4.3
Mutltipliziere mit .
Schritt 1.1.5
Differenziere unter Anwendung der Konstantenregel.
Schritt 1.1.5.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.5.2
Addiere und .
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Faktorisiere unter Verwendung der binomischen Formeln.
Schritt 2.2.1
Schreibe als um.
Schritt 2.2.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 2.2.3
Schreibe das Polynom neu.
Schritt 2.2.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 2.3
Setze gleich .
Schritt 2.4
Addiere zu beiden Seiten der Gleichung.
Schritt 3
Schritt 3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 4
Schritt 4.1
Berechne bei .
Schritt 4.1.1
Ersetze durch .
Schritt 4.1.2
Vereinfache.
Schritt 4.1.2.1
Vereinfache jeden Term.
Schritt 4.1.2.1.1
Potenziere mit .
Schritt 4.1.2.1.2
Kombiniere und .
Schritt 4.1.2.1.3
Potenziere mit .
Schritt 4.1.2.1.4
Mutltipliziere mit .
Schritt 4.1.2.1.5
Mutltipliziere mit .
Schritt 4.1.2.2
Ermittle den gemeinsamen Nenner.
Schritt 4.1.2.2.1
Schreibe als einen Bruch mit dem Nenner .
Schritt 4.1.2.2.2
Mutltipliziere mit .
Schritt 4.1.2.2.3
Mutltipliziere mit .
Schritt 4.1.2.2.4
Schreibe als einen Bruch mit dem Nenner .
Schritt 4.1.2.2.5
Mutltipliziere mit .
Schritt 4.1.2.2.6
Mutltipliziere mit .
Schritt 4.1.2.2.7
Schreibe als einen Bruch mit dem Nenner .
Schritt 4.1.2.2.8
Mutltipliziere mit .
Schritt 4.1.2.2.9
Mutltipliziere mit .
Schritt 4.1.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.1.2.4
Vereinfache jeden Term.
Schritt 4.1.2.4.1
Mutltipliziere mit .
Schritt 4.1.2.4.2
Mutltipliziere mit .
Schritt 4.1.2.4.3
Mutltipliziere mit .
Schritt 4.1.2.5
Vereinfache durch Addieren und Subtrahieren.
Schritt 4.1.2.5.1
Subtrahiere von .
Schritt 4.1.2.5.2
Addiere und .
Schritt 4.1.2.5.3
Subtrahiere von .
Schritt 4.2
Liste all Punkte auf.
Schritt 5