Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Schritt 4.1
Wende das Distributivgesetz an.
Schritt 4.2
Wende das Distributivgesetz an.
Schritt 4.3
Wende das Distributivgesetz an.
Schritt 4.4
Stelle und um.
Schritt 4.5
Stelle und um.
Schritt 4.6
Potenziere mit .
Schritt 4.7
Potenziere mit .
Schritt 4.8
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.9
Addiere und .
Schritt 4.10
Mutltipliziere mit .
Schritt 4.11
Mutltipliziere mit .
Schritt 4.12
Addiere und .
Schritt 5
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 10
Wende die Konstantenregel an.
Schritt 11
Schritt 11.1
Vereinfache.
Schritt 11.1.1
Kombiniere und .
Schritt 11.1.2
Kombiniere und .
Schritt 11.2
Vereinfache.
Schritt 12
Die Lösung ist die Stammfunktion der Funktion .