Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Benutze die Halbwinkelformel, um als neu zu schreiben.
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Schritt 7.1
Kombiniere und .
Schritt 7.2
Kürze den gemeinsamen Teiler von und .
Schritt 7.2.1
Faktorisiere aus heraus.
Schritt 7.2.2
Kürze die gemeinsamen Faktoren.
Schritt 7.2.2.1
Faktorisiere aus heraus.
Schritt 7.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 7.2.2.3
Forme den Ausdruck um.
Schritt 7.2.2.4
Dividiere durch .
Schritt 8
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 9
Wende die Konstantenregel an.
Schritt 10
Schritt 10.1
Es sei . Ermittle .
Schritt 10.1.1
Differenziere .
Schritt 10.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 10.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 10.1.4
Mutltipliziere mit .
Schritt 10.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 11
Kombiniere und .
Schritt 12
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 13
Das Integral von nach ist .
Schritt 14
Vereinfache.
Schritt 15
Ersetze alle durch .
Schritt 16
Schritt 16.1
Kombiniere und .
Schritt 16.2
Wende das Distributivgesetz an.
Schritt 16.3
Kürze den gemeinsamen Faktor von .
Schritt 16.3.1
Kürze den gemeinsamen Faktor.
Schritt 16.3.2
Forme den Ausdruck um.
Schritt 17
Die Lösung ist die Stammfunktion der Funktion .