Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Schritt 4.1
Benutze , um als neu zu schreiben.
Schritt 4.2
Benutze , um als neu zu schreiben.
Schritt 4.3
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 4.4
Multipliziere die Exponenten in .
Schritt 4.4.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.4.2
Kombiniere und .
Schritt 4.4.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 5
Schritt 5.1
Es sei . Ermittle .
Schritt 5.1.1
Differenziere .
Schritt 5.1.2
Differenziere.
Schritt 5.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 5.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 5.1.3
Berechne .
Schritt 5.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.3.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.1.3.4
Kombiniere und .
Schritt 5.1.3.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.1.3.6
Vereinfache den Zähler.
Schritt 5.1.3.6.1
Mutltipliziere mit .
Schritt 5.1.3.6.2
Subtrahiere von .
Schritt 5.1.3.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.1.3.8
Kombiniere und .
Schritt 5.1.3.9
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 5.1.4
Subtrahiere von .
Schritt 5.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 6
Mutltipliziere mit .
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 9
Schritt 9.1
Schreibe als um.
Schritt 9.2
Vereinfache.
Schritt 9.2.1
Kombiniere und .
Schritt 9.2.2
Kürze den gemeinsamen Teiler von und .
Schritt 9.2.2.1
Faktorisiere aus heraus.
Schritt 9.2.2.2
Kürze die gemeinsamen Faktoren.
Schritt 9.2.2.2.1
Faktorisiere aus heraus.
Schritt 9.2.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 9.2.2.2.3
Forme den Ausdruck um.
Schritt 9.2.2.2.4
Dividiere durch .
Schritt 10
Ersetze alle durch .
Schritt 11
Die Lösung ist die Stammfunktion der Funktion .