Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 2.4
Berechne .
Schritt 2.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4.3
Mutltipliziere mit .
Schritt 2.5
Differenziere unter Anwendung der Konstantenregel.
Schritt 2.5.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.5.2
Addiere und .
Schritt 3
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Schritt 3.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Mutltipliziere mit .
Schritt 3.3
Berechne .
Schritt 3.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.3
Mutltipliziere mit .
Schritt 3.4
Berechne .
Schritt 3.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4.3
Mutltipliziere mit .
Schritt 4
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 5
Schritt 5.1
Bestimme die erste Ableitung.
Schritt 5.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 5.1.2
Berechne .
Schritt 5.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.2.3
Mutltipliziere mit .
Schritt 5.1.3
Berechne .
Schritt 5.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.3.3
Mutltipliziere mit .
Schritt 5.1.4
Berechne .
Schritt 5.1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.4.3
Mutltipliziere mit .
Schritt 5.1.5
Differenziere unter Anwendung der Konstantenregel.
Schritt 5.1.5.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 5.1.5.2
Addiere und .
Schritt 5.2
Die erste Ableitung von nach ist .
Schritt 6
Schritt 6.1
Setze die erste Ableitung gleich .
Schritt 6.2
Faktorisiere die linke Seite der Gleichung.
Schritt 6.2.1
Faktorisiere aus heraus.
Schritt 6.2.1.1
Faktorisiere aus heraus.
Schritt 6.2.1.2
Faktorisiere aus heraus.
Schritt 6.2.1.3
Faktorisiere aus heraus.
Schritt 6.2.1.4
Faktorisiere aus heraus.
Schritt 6.2.1.5
Faktorisiere aus heraus.
Schritt 6.2.2
Faktorisiere unter Verwendung der binomischen Formeln.
Schritt 6.2.2.1
Schreibe als um.
Schritt 6.2.2.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 6.2.2.3
Schreibe das Polynom neu.
Schritt 6.2.2.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 6.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 6.4
Setze gleich .
Schritt 6.5
Setze gleich und löse nach auf.
Schritt 6.5.1
Setze gleich .
Schritt 6.5.2
Löse nach auf.
Schritt 6.5.2.1
Setze gleich .
Schritt 6.5.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 7
Schritt 7.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 8
Kritische Punkte zum auswerten.
Schritt 9
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 10
Schritt 10.1
Vereinfache jeden Term.
Schritt 10.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 10.1.2
Mutltipliziere mit .
Schritt 10.1.3
Mutltipliziere mit .
Schritt 10.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 10.2.1
Addiere und .
Schritt 10.2.2
Subtrahiere von .
Schritt 11
ist ein lokales Maximum, weil der Wert der zweiten Ableitung negativ ist. Dies wird auch Prüfung der zweiten Ableitung genannt.
ist ein lokales Maximum
Schritt 12
Schritt 12.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 12.2
Vereinfache das Ergebnis.
Schritt 12.2.1
Vereinfache jeden Term.
Schritt 12.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 12.2.1.2
Mutltipliziere mit .
Schritt 12.2.1.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 12.2.1.4
Mutltipliziere mit .
Schritt 12.2.1.5
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 12.2.1.6
Mutltipliziere mit .
Schritt 12.2.2
Vereinfache durch Addieren von Zahlen.
Schritt 12.2.2.1
Addiere und .
Schritt 12.2.2.2
Addiere und .
Schritt 12.2.2.3
Addiere und .
Schritt 12.2.3
Die endgültige Lösung ist .
Schritt 13
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 14
Schritt 14.1
Vereinfache jeden Term.
Schritt 14.1.1
Potenziere mit .
Schritt 14.1.2
Mutltipliziere mit .
Schritt 14.1.3
Mutltipliziere mit .
Schritt 14.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 14.2.1
Addiere und .
Schritt 14.2.2
Subtrahiere von .
Schritt 15
Schritt 15.1
Teile in separate Intervalle um die -Werte herum auf, die die erste Ableitung zu oder nicht definiert machen.
Schritt 15.2
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Schritt 15.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 15.2.2
Vereinfache das Ergebnis.
Schritt 15.2.2.1
Vereinfache jeden Term.
Schritt 15.2.2.1.1
Potenziere mit .
Schritt 15.2.2.1.2
Mutltipliziere mit .
Schritt 15.2.2.1.3
Potenziere mit .
Schritt 15.2.2.1.4
Mutltipliziere mit .
Schritt 15.2.2.1.5
Mutltipliziere mit .
Schritt 15.2.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 15.2.2.2.1
Subtrahiere von .
Schritt 15.2.2.2.2
Addiere und .
Schritt 15.2.2.3
Die endgültige Lösung ist .
Schritt 15.3
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Schritt 15.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 15.3.2
Vereinfache das Ergebnis.
Schritt 15.3.2.1
Vereinfache jeden Term.
Schritt 15.3.2.1.1
Potenziere mit .
Schritt 15.3.2.1.2
Mutltipliziere mit .
Schritt 15.3.2.1.3
Potenziere mit .
Schritt 15.3.2.1.4
Mutltipliziere mit .
Schritt 15.3.2.1.5
Mutltipliziere mit .
Schritt 15.3.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 15.3.2.2.1
Subtrahiere von .
Schritt 15.3.2.2.2
Addiere und .
Schritt 15.3.2.3
Die endgültige Lösung ist .
Schritt 15.4
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Schritt 15.4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 15.4.2
Vereinfache das Ergebnis.
Schritt 15.4.2.1
Vereinfache jeden Term.
Schritt 15.4.2.1.1
Potenziere mit .
Schritt 15.4.2.1.2
Mutltipliziere mit .
Schritt 15.4.2.1.3
Potenziere mit .
Schritt 15.4.2.1.4
Mutltipliziere mit .
Schritt 15.4.2.1.5
Mutltipliziere mit .
Schritt 15.4.2.2
Vereinfache durch Substrahieren von Zahlen.
Schritt 15.4.2.2.1
Subtrahiere von .
Schritt 15.4.2.2.2
Subtrahiere von .
Schritt 15.4.2.3
Die endgültige Lösung ist .
Schritt 15.5
Da die erste Ableitung das Vorzeichen um nicht gewechselt hat, ist dies kein lokales Maximum oder Minimum.
Kein lokales Maximum oder Minimum
Schritt 15.6
Da die erste Ableitung um herum das Vorzeichen von positiv zu negativ gewechselt hat, ist ein lokales Maximum.
ist ein lokales Maximum
ist ein lokales Maximum
Schritt 16