Analysis Beispiele

Ermitteln, wo ansteigend/abfallend mittels Ableitungen (x+9)/(x^2-81)
Schritt 1
Schreibe als Funktion.
Schritt 2
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 2.1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.2.4
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.4.1
Addiere und .
Schritt 2.1.2.4.2
Mutltipliziere mit .
Schritt 2.1.2.5
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.7
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.2.8
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.8.1
Addiere und .
Schritt 2.1.2.8.2
Mutltipliziere mit .
Schritt 2.1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.1
Wende das Distributivgesetz an.
Schritt 2.1.3.2
Wende das Distributivgesetz an.
Schritt 2.1.3.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.3.1.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.3.1.1.1
Bewege .
Schritt 2.1.3.3.1.1.2
Mutltipliziere mit .
Schritt 2.1.3.3.1.2
Mutltipliziere mit .
Schritt 2.1.3.3.2
Subtrahiere von .
Schritt 2.1.3.4
Stelle die Terme um.
Schritt 2.1.3.5
Faktorisiere durch Gruppieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.5.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.5.1.1
Faktorisiere aus heraus.
Schritt 2.1.3.5.1.2
Schreibe um als plus
Schritt 2.1.3.5.1.3
Wende das Distributivgesetz an.
Schritt 2.1.3.5.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.5.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 2.1.3.5.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 2.1.3.5.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 2.1.3.6
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.6.1
Schreibe als um.
Schritt 2.1.3.6.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 2.1.3.6.3
Wende die Produktregel auf an.
Schritt 2.1.3.7
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.7.1
Faktorisiere aus heraus.
Schritt 2.1.3.7.2
Schreibe als um.
Schritt 2.1.3.7.3
Faktorisiere aus heraus.
Schritt 2.1.3.7.4
Schreibe als um.
Schritt 2.1.3.7.5
Potenziere mit .
Schritt 2.1.3.7.6
Potenziere mit .
Schritt 2.1.3.7.7
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.1.3.7.8
Addiere und .
Schritt 2.1.3.8
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.8.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.3.8.2
Forme den Ausdruck um.
Schritt 2.1.3.9
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2
Die erste Ableitung von nach ist .
Schritt 3
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze die erste Ableitung gleich .
Schritt 3.2
Setze den Zähler gleich Null.
Schritt 3.3
Da , gibt es keine Lösungen.
Keine Lösung
Keine Lösung
Schritt 4
Es gibt keine Werte von im Definitionsbereich, wo die Ableitung ist oder nicht definiert ist.
Keine kritischen Punkte gefunden
Schritt 5
Ermittele, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 5.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Setze gleich .
Schritt 5.2.2
Addiere zu beiden Seiten der Gleichung.
Schritt 6
Nach dem Auffinden des Punktes, der die Ableitung gleich oder undefiniert macht, ist das Intervall, in dem geprüft werden muss, wo ansteigt und abfällt, gleich .
Schritt 7
Setze einen Wert aus dem Intervall in die Ableitung ein, um zu bestimmen, ob die Funktion ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.1
Subtrahiere von .
Schritt 7.2.1.2
Potenziere mit .
Schritt 7.2.2
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.2.1.2
Forme den Ausdruck um.
Schritt 7.2.2.2
Mutltipliziere mit .
Schritt 7.2.3
Die endgültige Lösung ist .
Schritt 7.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 8
Setze einen Wert aus dem Intervall in die Ableitung ein, um zu bestimmen, ob die Funktion ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 8.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1.1
Subtrahiere von .
Schritt 8.2.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 8.2.2
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.2.1.2
Forme den Ausdruck um.
Schritt 8.2.2.2
Mutltipliziere mit .
Schritt 8.2.3
Die endgültige Lösung ist .
Schritt 8.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 9
Liste die Intervalle auf, in denen die Funktion ansteigt und in denen sie abfällt.
Abfallend im Intervall:
Schritt 10