Analysis Beispiele

Ermittle die Wendepunkte 2cos(x)+cos(x)^2
Schritt 1
Schreibe als Funktion.
Schritt 2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2.2
Die Ableitung von nach ist .
Schritt 2.1.2.3
Mutltipliziere mit .
Schritt 2.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.1.3.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.3.1.3
Ersetze alle durch .
Schritt 2.1.3.2
Die Ableitung von nach ist .
Schritt 2.1.3.3
Mutltipliziere mit .
Schritt 2.1.4
Stelle die Terme um.
Schritt 2.2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.2.2.3
Die Ableitung von nach ist .
Schritt 2.2.2.4
Die Ableitung von nach ist .
Schritt 2.2.2.5
Potenziere mit .
Schritt 2.2.2.6
Potenziere mit .
Schritt 2.2.2.7
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.2.8
Addiere und .
Schritt 2.2.2.9
Potenziere mit .
Schritt 2.2.2.10
Potenziere mit .
Schritt 2.2.2.11
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.2.12
Addiere und .
Schritt 2.2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.3.2
Die Ableitung von nach ist .
Schritt 2.2.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.4.1
Wende das Distributivgesetz an.
Schritt 2.2.4.2
Mutltipliziere mit .
Schritt 2.3
Die zweite Ableitung von nach ist .
Schritt 3
Setze die zweite Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze die zweite Ableitung gleich .
Schritt 3.2
Stelle jede Seite der Gleichung graphisch dar. Die Lösung ist der x-Wert des Schnittpunktes.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 4
Bestimme die Punkte, an denen die zweite Ableitung gleich ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze in , um den Wert von zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.1.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1.1
Der genau Wert von ist .
Schritt 4.1.2.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.2.1.2.2
Forme den Ausdruck um.
Schritt 4.1.2.1.3
Der genau Wert von ist .
Schritt 4.1.2.1.4
Wende die Produktregel auf an.
Schritt 4.1.2.1.5
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.1.2.1.6
Potenziere mit .
Schritt 4.1.2.2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.2.1
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 4.1.2.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.1.2.2.3
Addiere und .
Schritt 4.1.2.3
Die endgültige Lösung ist .
Schritt 4.2
Der Punkt, der durch Einsetzen von in ermittelt werden kann, ist . Dieser Punkt kann ein Wendepunkt sein.
Schritt 5
Teile in Intervalle um die Punkte herum, die potentiell Wendepunkte sein könnten.
Schritt 6
Setze einen Wert aus dem Intervall in die zweite Ableitung ein, um festzustellen, ob sie ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Die endgültige Lösung ist .
Schritt 6.3
Bei , die zweite Ableitung ist . Da diese negativ ist, fällt die zweite Ableitung im Intervall
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 7
Setze einen Wert aus dem Intervall in die zweite Ableitung ein, um festzustellen, ob sie ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Die endgültige Lösung ist .
Schritt 7.3
Bei ist die zweite Ableitung . Da dies positiv ist, steigt die zweite Ableitung auf dem Intervall .
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 8
Ein Wendepunkt ist ein Punkt auf einer Kurve, an dem die Konkavität das Vorzeichen von Plus zu Minus oder von Minus zu Plus ändert. In diesem Fall ist der Wendepunkt .
Schritt 9