Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 1.1.2
Differenziere.
Schritt 1.1.2.1
Multipliziere die Exponenten in .
Schritt 1.1.2.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.1.2.1.2
Mutltipliziere mit .
Schritt 1.1.2.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.2.5
Vereinfache den Ausdruck.
Schritt 1.1.2.5.1
Addiere und .
Schritt 1.1.2.5.2
Mutltipliziere mit .
Schritt 1.1.2.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.7
Vereinfache durch Herausfaktorisieren.
Schritt 1.1.2.7.1
Mutltipliziere mit .
Schritt 1.1.2.7.2
Faktorisiere aus heraus.
Schritt 1.1.2.7.2.1
Faktorisiere aus heraus.
Schritt 1.1.2.7.2.2
Faktorisiere aus heraus.
Schritt 1.1.2.7.2.3
Faktorisiere aus heraus.
Schritt 1.1.3
Kürze die gemeinsamen Faktoren.
Schritt 1.1.3.1
Faktorisiere aus heraus.
Schritt 1.1.3.2
Kürze den gemeinsamen Faktor.
Schritt 1.1.3.3
Forme den Ausdruck um.
Schritt 1.1.4
Vereinfache.
Schritt 1.1.4.1
Wende das Distributivgesetz an.
Schritt 1.1.4.2
Vereinfache den Zähler.
Schritt 1.1.4.2.1
Mutltipliziere mit .
Schritt 1.1.4.2.2
Subtrahiere von .
Schritt 1.1.4.3
Faktorisiere aus heraus.
Schritt 1.1.4.4
Schreibe als um.
Schritt 1.1.4.5
Faktorisiere aus heraus.
Schritt 1.1.4.6
Schreibe als um.
Schritt 1.1.4.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Setze den Zähler gleich Null.
Schritt 2.3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3
Die Werte, die die Ableitung gleich machen, sind .
Schritt 4
Schritt 4.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 4.2
Löse nach auf.
Schritt 4.2.1
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 4.2.2
Vereinfache .
Schritt 4.2.2.1
Schreibe als um.
Schritt 4.2.2.2
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 5
Teile in separate Intervalle um die -Werte herum, sodass die Ableitung gleich oder nicht definiert ist.
Schritt 6
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Schritt 6.2.1
Vereinfache den Ausdruck.
Schritt 6.2.1.1
Addiere und .
Schritt 6.2.1.2
Potenziere mit .
Schritt 6.2.2
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 7
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Schritt 7.2.1
Vereinfache den Ausdruck.
Schritt 7.2.1.1
Addiere und .
Schritt 7.2.1.2
Potenziere mit .
Schritt 7.2.2
Kürze den gemeinsamen Teiler von und .
Schritt 7.2.2.1
Faktorisiere aus heraus.
Schritt 7.2.2.2
Kürze die gemeinsamen Faktoren.
Schritt 7.2.2.2.1
Faktorisiere aus heraus.
Schritt 7.2.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 7.2.2.2.3
Forme den Ausdruck um.
Schritt 7.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 7.2.4
Die endgültige Lösung ist .
Schritt 7.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 8
Schritt 8.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 8.2
Vereinfache das Ergebnis.
Schritt 8.2.1
Addiere und .
Schritt 8.2.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 8.2.3
Dividiere durch .
Schritt 8.2.4
Mutltipliziere mit .
Schritt 8.2.5
Die endgültige Lösung ist .
Schritt 8.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 9
Liste die Intervalle auf, in denen die Funktion ansteigt und in denen sie abfällt.
Ansteigend im Intervall:
Abfallend im Intervall:
Schritt 10