Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Berechne .
Schritt 1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Mutltipliziere mit .
Schritt 1.1.3
Berechne .
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Schreibe als um.
Schritt 1.1.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.1.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3.3
Ersetze alle durch .
Schritt 1.1.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.5
Multipliziere die Exponenten in .
Schritt 1.1.3.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.1.3.5.2
Mutltipliziere mit .
Schritt 1.1.3.6
Mutltipliziere mit .
Schritt 1.1.3.7
Potenziere mit .
Schritt 1.1.3.8
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.1.3.9
Subtrahiere von .
Schritt 1.1.3.10
Mutltipliziere mit .
Schritt 1.1.4
Vereinfache.
Schritt 1.1.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.1.4.2
Kombiniere und .
Schritt 1.1.4.3
Stelle die Terme um.
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3
Finde den Hauptnenner der Terme in der Gleichung.
Schritt 2.3.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.3.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 2.4
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Schritt 2.4.1
Multipliziere jeden Term in mit .
Schritt 2.4.2
Vereinfache die linke Seite.
Schritt 2.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.1.2
Forme den Ausdruck um.
Schritt 2.5
Löse die Gleichung.
Schritt 2.5.1
Schreibe die Gleichung als um.
Schritt 2.5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.5.3
Faktorisiere aus heraus.
Schritt 2.5.3.1
Faktorisiere aus heraus.
Schritt 2.5.3.2
Faktorisiere aus heraus.
Schritt 2.5.3.3
Faktorisiere aus heraus.
Schritt 2.5.4
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.5.4.1
Teile jeden Ausdruck in durch .
Schritt 2.5.4.2
Vereinfache die linke Seite.
Schritt 2.5.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.5.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.5.4.2.1.2
Dividiere durch .
Schritt 2.5.4.3
Vereinfache die rechte Seite.
Schritt 2.5.4.3.1
Dividiere durch .
Schritt 2.5.5
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.5.6
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 2.5.7
Vereinfache .
Schritt 2.5.7.1
Schreibe als um.
Schritt 2.5.7.1.1
Schreibe als um.
Schritt 2.5.7.1.2
Schreibe als um.
Schritt 2.5.7.2
Ziehe Terme aus der Wurzel heraus.
Schritt 2.5.7.3
Schreibe als um.
Schritt 3
Schritt 3.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 3.2
Löse nach auf.
Schritt 3.2.1
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.2.2
Vereinfache .
Schritt 3.2.2.1
Schreibe als um.
Schritt 3.2.2.2
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 4
Schritt 4.1
Berechne bei .
Schritt 4.1.1
Ersetze durch .
Schritt 4.1.2
Vereinfache.
Schritt 4.1.2.1
Vereinfache jeden Term.
Schritt 4.1.2.1.1
Mutltipliziere mit .
Schritt 4.1.2.1.2
Vereinfache den Nenner.
Schritt 4.1.2.1.2.1
Wende die Produktregel auf an.
Schritt 4.1.2.1.2.2
Potenziere mit .
Schritt 4.1.2.1.2.3
Schreibe als um.
Schritt 4.1.2.1.2.4
Potenziere mit .
Schritt 4.1.2.1.2.5
Mutltipliziere mit .
Schritt 4.1.2.1.3
Mutltipliziere mit .
Schritt 4.1.2.1.4
Vereinige und vereinfache den Nenner.
Schritt 4.1.2.1.4.1
Mutltipliziere mit .
Schritt 4.1.2.1.4.2
Potenziere mit .
Schritt 4.1.2.1.4.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.1.2.1.4.4
Addiere und .
Schritt 4.1.2.1.4.5
Schreibe als um.
Schritt 4.1.2.1.4.5.1
Benutze , um als neu zu schreiben.
Schritt 4.1.2.1.4.5.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.1.2.1.4.5.3
Kombiniere und .
Schritt 4.1.2.1.4.5.4
Kürze den gemeinsamen Faktor von .
Schritt 4.1.2.1.4.5.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.2.1.4.5.4.2
Forme den Ausdruck um.
Schritt 4.1.2.1.4.5.5
Berechne den Exponenten.
Schritt 4.1.2.1.5
Kürze den gemeinsamen Teiler von und .
Schritt 4.1.2.1.5.1
Faktorisiere aus heraus.
Schritt 4.1.2.1.5.2
Kürze die gemeinsamen Faktoren.
Schritt 4.1.2.1.5.2.1
Faktorisiere aus heraus.
Schritt 4.1.2.1.5.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.1.2.1.5.2.3
Forme den Ausdruck um.
Schritt 4.1.2.1.6
Vereinfache den Zähler.
Schritt 4.1.2.1.6.1
Schreibe als um.
Schritt 4.1.2.1.6.2
Potenziere mit .
Schritt 4.1.2.1.6.3
Schreibe als um.
Schritt 4.1.2.1.6.3.1
Faktorisiere aus heraus.
Schritt 4.1.2.1.6.3.2
Schreibe als um.
Schritt 4.1.2.1.6.4
Ziehe Terme aus der Wurzel heraus.
Schritt 4.1.2.1.7
Kürze den gemeinsamen Faktor von .
Schritt 4.1.2.1.7.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.2.1.7.2
Dividiere durch .
Schritt 4.1.2.2
Subtrahiere von .
Schritt 4.2
Berechne bei .
Schritt 4.2.1
Ersetze durch .
Schritt 4.2.2
Vereinfache.
Schritt 4.2.2.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.2.2.2
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Undefiniert
Undefiniert
Schritt 4.3
Liste all Punkte auf.
Schritt 5